
NASASP33 PARTI

,u'ss-s_col

SPACE FLIGHT HANDBOOKS

Volume1

OrbitalFlight Handbook

NATIONALAERONAUTICSANDSPACEADMINISTRATION





SPACE FLIGHT HANDBOOKS
Volume1

OrbitalFlightHandbook
PART 1 - BASIC TECHNIQUES AND DATA

Prepared for the

GEORGE C.

MARSHALL SPACE FLIGHT CENTER

Huntsville, Alabama

Under Contract NAS 8-5031

Office of Scientific and Technical Information
NATIONAL AERONAUTICS AND SPACE ADMiNiSTRATiONwashingt0n,D.C. 1963





FOREWORD

This handbook has been produced by the Space Systems Division of the

Martin Company under Contract NAS8-5031 with the George C. Marshall Space

Flight Center of the National Aeronautics and Space Administration. The

handbook expands and updates work previously done by the Martin Company

and also incorporates, as indicated in the text, some of the work done

by Space Technology Laboratories, Inc. and Norair Division of Northrop

Corporation under previous contracts with the George C. Marshall Space

Flight Center. The Orbital Flight Handbook is considered the first in

a series of volumes by various contractors, sponsored by MSFC, treating

the dynamics of space flight in a variety of aspects of interest to the

mission designer and evaluator. The primary purpose of these books is to

serve as a basic tool in preliminary mission planning. In condensed form,

they provide background data and material collected through several years

of intensive studies in each space mission ares, such as earth orbital

flight, lunar flight, and interplanetary flight.

Volume I, the present volume, is concerned with earth orbital

missions. The volume consists of three parts presented in three separate

books. The parts are:

Part 1 - Basic Techniques and Data

Part 2 - Mission Sequencing Problems

Part 3 - Requirements

The Martin Company Program Manager for this project has been

Jorgen Jensen; George Townsend has been Technical Director. George

Townsend has also had the direct responsibility for the coordination

and preparation of this volume. Donald Kraft is one of the principal

contributors to this volume; information has also been supplied by

Jyri Kork and Sidney Russak. Barclay E. Tucker and John Magnus have

assisted in preparing the handbook for publication.

The assistance given by the Future Projects Office at MSFC and by

the MSFC Contract Management Panel, directed by Conrad D. Swanson, is

gratefully acknowledged.
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I. INTRODUCTION

The material within the manual is arranged in

three major areas and these areas are further

divided into related discussions. The classifi-

cation of' material is as follows:

Basic Techniques and Data--Chapters II

through V.

Mission Sequencing Problems--Chapters VI

through LX.

Requirements--Chapters X through XIII.

These areas encompass most of the material in

the field of earth orbital mechanics. The intent

in all of these discussions is to provide analytic

relationships which define the problem, and to

augment these discussions with an error analysis

and graphical or tabular data. In some of the
material, however, the number of variables is

so large that it is not practical to present graphi-

cal data; in others, the probIem is so involved

that it is not possible to obtain analytic solutions

(such investigations were conducted numerically).

In all cases, however, the prescribed purpose

has been achieved without sacrificing the scope

of the investigation.

A brief resume of some of the more important

features of these chapters is presented in the

following paragraphs.

II. PttYSICAL DATA

The material in this chapter reviews some of

the work published by R. M. L. and by W. M. Kaula

for the purpose of presenting a set of constants

necessary in the computation of trajectories.

Appendix B extending this data is an internalIy

consistent set of constants developed by Dr. H.
G. L. Krause.

The chapter then discusses other geophysical
factors which can affect the selection of an orbit.

Included in these discussions is material on the

radiation environment, the meteoroid environ-

ment and the upper atmosphere and its variability.

The chapter concludes with a discussion of the
measurement of time, distance, mass, etc. This

portion of the chapter contains tables constructed

for the purposes of making the transformation of

units as simple and accurate as possible.

III. ORBITAL MECttANICS

The discussions of this chapter present the

basic central motion trajectory equations to be
used in the balance of the text. Relations de-

fining the 3-D motion are developed and a large

number of identities and equations are presented

for elliptic motion. These equations (numbering

in excess of 400) are followed by approximately

75 series expansions of the time variant orbital

parameters with arguments of the mean anomaly,

the true anomaly, and the eccentric anomaly. The
chapter concludes with a discussion of the n-body

problems.

IV. PERTURBATIONS

Special and general perturbation techniques

are discussed, and the results of several general

perturbation theories are catalogued and compared.

This presentation provides the reader with the in-

formation necessary to evaluate the theories ['or

each individual application and with an awareness

of the subtle differences in the approaches and
results.

V. SATELLITE LIFETIMES

The material of this chapter presents in suc-

cession discussions pertaining to tile aerodynamic

forces in free molecular flow, to analytic approxi-

mations for use in determining the lifetime of

satellites in circular orbits in a nonrotating atmos-

phere, and, finally, to decay rates in a rotating

oblate atmosphere. Where possible, analytic ex-

pressions have been obtained, but accuracy has

not been sacrificed for form, and extensive use

has been made of numerical computation facilities.

Itere again, however, attention to detail revealed

several nondimensional ciecay parameters and made

it possible to make these computations more effi-

ciently.

VI. MANEUVERS

The general problem of orbital maneuvering

is approached from several directions. First,

the case of independent adjustment of each of the

six constants of integration is presented both for

the case of circular motion and elliptic motion.

Then the general problem of transferring between

two specified terminais in space is developed.
These discussions, like those of the other chapters,

are fully documented.

The chapter concludes with a discussion of the

effects of finite burning time, of the requirements

for the propulsion system to accomplish the pre-

viously described maneuvers, a discussion of the

error sensitivities, and a discussion of the sta-
tistical distribution of errors in the resultant

orbital ele me nts.

VII. RENDEZVOUS

Rendezvous is broken into two basic phases

for the purpose of the discussion in this handbook.

The first of these phases contains the launch and

ascent timing problems, the problems of maneu-
vers and of the relative merits of direct ascent

versus the use of intermittent orbits or rendezvous

compatible orbits. The second phase is the dis-
cussion of the terminal maneuvers. Included in

this final section are the equations of relative

motion, a discussion of possible types of guidance

laws, and information necessary to evaluate the

energy and timing of the terminal maneuver whether
it be of a short or long term nature.
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VIII. ORBITAL DEPARTURE

The problem of recovering a satellite from
orbit at a specific point on earth at a specific time

is essentially the reverse of the rendezvous prob-
lem, and the approach taken here is the same.
First, an intermediate orbit is established which

satisfies the timing constraints, then the maneuver
is completed by deorbiting without requiring a
lateral maneuver. For cases where this approach
should prove impractical, data for a maneuverable
re-entry is also presented.

The presentation progresses from the timing
problem to the analyses of the intervals between
acceptable departures, the finite burning simu-
lation of the deorbit maneuver, and the error
sensitivities for deorbiting.

IX. SATELLITE RE-ENTRY

Once the satellite leaves orbit it must penetrate
the more dense regions of the atmosphere prior
to being landed. This chapter treats analytically
and parametrically (i. e., as function of the re-
entry velocity vector) the various factors which
are characteristic of this trajectory: Included
are the time histories of altitude, velocity and
flight path angle; also included are the range
attained in descent, the maximum deceleration,
the maximum dynamic pressure, and equilibrium
radiative skin temperatures, as well as a dis-
cussion of aerodynamic maneuverability. Thus,
this chapter makes it possible to analyze the tra-
jectory all the way from launch to impact in a

reasonably accurate manner before progressing
to a detailed numerical study of a particular vehi-
cle flying a particular trajectory.

XI. ORBIT COMPUTATION

The discussions of this chapter tie many of the
previous chapters together since all trajectories
to be of value must be known. The discussions
progress from the basic definitions of the basic

coordinate systems and transformations between
them to the determination of initial values of the

$

six constants of integration, to the theory of ob-
servational errors, and finally to the subject of
orbit improvement. In this process, data is pre-
sented for most of the current tracking facilities
and for many basic techniques applicable to the
various problem areas (e. g. , orbit improvement
via least squares, weighted least squares, mini-
mum variance, etc. ). The chapter concludes with

a presentation of data useful in the preliminary
analysis of orbits.

XII. GUIDANCE AND CONTROL REQUIREMENTS

The discussions of this chapter relate the
errors in the six constants of integration to errors
in a set of six defining parameters. This 6 x 6
matrix of error partials has been inverted to ro-
tate the parameter errors to errors in the ele-
ments. The result is that it is possible to pro-
gress from a set of parameter errors at some
time directly to the errors in the same parameters
at any other time. This formulation has proved
itself useful not only in the study of error propa-

gation but in the analysis of differential corrections
and the long time rendezvous maneuver.

Also included in the chapter is information
related to problems of guidance system design,
the attitude disturbing torques and the attitude
control system.

X. WAITING ORBIT CRITERIA

The balance of the book treats problems as-
sociated with the flight mechanics aspects of
specific missions. However, these are some
problems which are not of this nature but which
can influence the selection of orbits. (The radi-

ation environment etc., of Chapter II is an example
of this type material. } Accordingly, Chapter X
presents some information pertaining to the solar
radiation heat level, and to the storage of cryo-

genic fluids. This information is treated only
qualitatively because it is outside the general
field of orbital mechanics and is itself the subject
for an extensive study. The material is included
however, because of the requirement for fuel in
many of the discussions of maneuver outlined in
the rest of the text.

XHI. MISSION REQUIREMENTS

The purpose of this chapter is to present many
problems which directly affect the selection of
orbits for various missions and experiments. The
data include satellite coverage (both area and
point}, satellite illumination and solar eclipses,
solar elevation above the horizon, surface orienta-

tion relative to the sun, sensor limitations (e. g.,
photographic resolution considerations, radar
limitations), and ground tracks. Thus, giveh a
particular mission, one can translate the accompa-

nying requirements to limitations on the orbital
elements and, in turn, pick a compromise set
which best satisfies these requirements (when the
radiation environment, meteoroid hazard and radi-
ation heat loads have been factored into the selec-

tion).
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II. PHYSICAL DATA

G

i

J
n

K
S

L

L'

m

M
O

n

P

Pn ( )

r

r

SYMBOLS

Semimajor axis of the instantaneous

elliptical orbit

Eccentricity of the instantaneous ellipti-
cal orbit

Flattening = (Requatorial - Rpola r) ÷

Requatorial

Universal gravitational constant

Inclination of the instantaneous elliptical

orbit

Coefficients of the potential function

Solar gravitational constant = G m@

Latitude

Coefficient of the lunar equation

Mass

Mean anomaly of epoch

Number

Probability

Legendre polynomial of order n

Radius

Radius of action (Tisserand' s criteria)

tb

U

M e

17

(Y

(Y

P

Coefficient obtained from t distribution

Potential function

Mean of a sample of size n

Gravitational constant for a planet - Gm
P

Mean of population from which sample is
taken

Parallax : ratio of two distances

Variance of population from which sample
is taken

Estimate of the variance assuming the

parent population is normal

Orbital period

Longitude o£ the ascending node of the
instantaneous elliptical orbit

Argument of perigee of the instantaneous

elliptical orbit

Subscripts

Lunar

Solar

Earth

Planet
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INTRODUCTION

In thestudyof trajectoriesabouttheearth,
factorsdefiningthetrajectorymustbeaccurately
known.Sincethesefactorsfall intotwoareas:

Astronauticalconstants

Geophysicalconstants

eachof thesegeneralareaswill beinvestigated.
In addition,informationwhichis notof a flight
mechanicsnaturebutwhichcaneffecttheselection
of orbftswill alsobepresented.This typeof in-
formationincludes:

Radiationhazarddata(all types)
Micrometeoroiddata

Shieldingdata.

Finally, informationnecessaryto convertthis
datafromonesetof unitstoanotherwill bepre-
sented.Thisdiscussiongoesbeyondunitcon-
version,however,to includea reviewof time
standardsandmeasurement.Thisreviewis ap-
plicabletothematerialpresentedin all of the
chapterswhichfollow.

A. ASTRONAUTICALCONSTANTS

Threenoteworthyarticlesdealingwiththe
constantswhichdefinethetrajectoryof amis-
sile or spacevehiclehavebeenpublishedwithin
thepasttwoyears. Thesearticlesare:

"AnalysisandStandardizationofAstro-
DynamicConstants"byM. W. Makemson,
R. M. L. Baker,Jr., andG. B. Westrom,
Journalof theAstronauticalSciences,Vol.
8, No. 1, Spring1961,pages1through13.

"A GeoidandWorldGeodeticSystem
Basedona Combination of Gravimetric,

Astrogeodetic and Satellite Data" by W.

M. Kaula, Journal of Geophysical Research,

Vol. 66, No. 6, June 1961, pages 1799
through 1811.

"On a Consistent System of Astrodynamic

Constants" by H. G. L. Krause, NASA

Report MTP-P&VE-F-62- 12, Marshall

Space Flight Center, 12 December 1962.

The first paper reviews measurements of

heliocentric, planetocentric and selenocentric

constants; the second treats the determination

of the geocentric constants by statistical methods
using the gravimetric, astrogeodetic and satellite

data. The work reported in these papers is
excellent and will not be reproduced since it is

readily available. Rather the published data
will be summarized and the best values selected

for use in trajectory analysis. It is felt that

this step is necessary because (1) there are
small inconsistencies in the data, and (2) there
is no mention in the first article of a method of

analysis or an approximate confidence interval.
"Confidence interval" will be used here to in-

dicate that the sample interval brackets the true

mean some prescribed percentage of the time.

The discussion of these constants will be

followed by a presentation of desirable data
which is obtained from the constants and tables

of conversions relating these quantities to the
corresponding quantities in other sets of units.

This latter set of tables is particularly important

since there is much confusion as to the meaning

of generally used units and the accuracy of the
conversion factors.

Dr. Krause' s paper, which is presented as

Appendix B to this volume by consent of the

author, presents a slightly different set of con-
stants. This results from the fact that the

approach taken was to produce an internally con-
sistent set of constants based on the author' s

adopted values of the independent quantities

rather than to accept the slight inconsistencies

resulting from the development of "best values"

for each of the quantities. It is noted, however,

that in nearly every instance Dr. Krause' s

values differ from those quoted in this section

by a quantity less than the uncertainties quoted

in this chapter. Thus, the two approaches seem
to complement each other.

1. Analysis of Constants

Although Baker, s exact analytical procedure
is not known, his results indicate a process

similar to the following:

(1) Collect all available data pertinent to

a particular quantity.

(2) Obtain the mean and standard deviation

of this sample

n

= x i

i=l

n

= _ (xi __)2
i= 1

2 n- 1 2
(9" - o

n

(3) Throw out all points deviating from

the mean by more than one standard
deviation.

(4) Recompute the mean and standard
deviation.

Assuming that the various pieces of data are

of roughly the same accuracy (this assumption
is necessary since the uncertainties quoted for

the number are inconsistent) and that there is no

uniform bias to the determinations, this procedure
will result in a reasonable estimate for the

quantity and its uncertainty, provided that the

sample size is sufficiently large. However,
there is no guarantee that the estimate will be

reasonable for small samples. A general feel
for the maximum number of random, unbiased

determinations required for a specified accuracy

of the resultant analysis can be obtained from

Tchebycheff, s inequality.
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P

2
n

b-2 (1 - p)

an estimate of the minimum

sample size.

Since the general accuracy of the determina-

tions is quoted to about 1 to 5 parts in

10 4 and since the standard deviations are of

the same order,

or

* K

n _ 10K P = 90%

100K P = 99%

where K is a constant of proportionality.

Because the sample sizes are generally smaller

than IO, it may appear that the confidence level

for the quoted constants will be less than 90%

but probably greater than 80% for most but not
all of the constants. This, however, is not

true as will be shown in the following para-

graphs.

Tchebycheff' s inequality provides a general

feel for the concept of assigning a probability

of correctness to the quoted value of any of the

discussed constants. However, the question

arises as to the definition of the number K;

moreover, even if K is defined, the estimates

are in general too conservative. For this
reason, the method described below will be
utilized.

Assuming once again, that the samples come

from a normal distribution, the probability P

that a given value will fall in a quoted region
about the mean is

P I _-a -aVe- < P' < x+a--a 1=VrF P"

However, care must be taken because the

quantities _'and a used in this expression are

the mean and variance of the true population,

1 _ xi 'not the estimates of V', _ - n

and a, _ = I _ (xi - _ )2 While these

n

estimates may be utilized there is no assurance

for the correctness for any but the large sample.
The solution to this problem is found in the "t"
distribution

t = "X -_! = _ .p._____[t (n- I)I12

lX i _-_)2 %
(n - I)

This distribution involves only _' and the data

x i and is of n - 1 degree of freedom. Since this

distribution is also tabulated it is possible to
write

t b

P (-tb_ t<t b) = __ f (t; n-
1)dt=P=l-b

t b

and convert the inequalities to obtain

</x I

]< _+tb n(n I) = 1 - b

The coefficient t b is called the b percent level

of t and locates points which cut off b/2 percent

of the area under f(t) on each tail (f(t) is sym-
metric about t = 0).

f (t)---'-

/
-%

Thus, the problem of defining the probability of

correctness which can be assigned to a quoted

constant is one of defining tb. Since in all the

work to be discussed I a variation will be quoted,

tb times the radical can be defined as cT . This

assumption results in an estimate of the probable

correctness of the quoted constant which is a

function only of the number of data points.

_n - 1tb

At this point it is possible to refer to a table of a

cumulative t distribution and obtain the estimate

of the confidence level for a given value of tb

(i.e., a specified sample size). However, since

this solution requires nonlinear interpolation,

the confidence levels have been plotted as a func-

tion of the sample size in Fig. I. These data
will be utilized for all estimates to be made in

this section.

In view of the facts that the original measure-

ments do not agree to within the probable errors

quoted for the experiments and that the confidence

levels for the results are reasonable, this pro-

cedure appears to be the most attractive means

of resolving the confusion associated with these
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constants until more and better data can be ob-

tained. This is not meant to imply that Baker, s
data should be used as presented because in
several cases his constants deserve special
attention. In any event, when superior data be-
come available they should either be weighted

heavily _ obtained from 0 = --2---
: (y.

i=l 1

or utilized in preference to any other value.

Kaula' s data will not be reviewed specifically
because it is included in the analysis which fol-
lows. However, in the discussion of the geo-
centric constants, special note will be made of
the agreement of Kaula' s data with Baker, s
and that obtained by the criteria outlined above.

2. Heliocentric Constants

a. Solar parallax

Planetary observations and theories of
planetary motion permit precise computation
of the angular position of the planets. Although
angular measurements are quite accurate, no
distance scale is readily available. Attempts
to resolve this problem have led to the compari-
son of large, unknown interplanetary distances
to the largest of the known distances available
to man, the equatorial radius of the earth. In
the process, solar parallax was defined as the
ratio of the earth' s equatorial radius to the
mean distance to the sun from a fictitious un-

perturbed planet whose mass and sidereal
period are those utilized by Gauss in his com-
putation of the solar gravitation constant (i. e.,
one astronomical unit). This definition renders
unnecessary the revisions in planetary tables
as more accurate fundamental constants are

made available, since the length of the a_4tro-
nomieal unit can be modified.

In the broadest sense, the solar parallax is
the ratio between two sets of units: (1) the

astronomical set utilizing the solar mass, the
astronomical unit and the mean solar day, and
(2) the laboratory set (cgs, etc. ).

Before reviewing solar parallax data obtained
from the literature, it is worthwhile to consider

the means of computing the values and their un-
certainties.

The first method, purely geometric, is
triangulation based on the distance between two
planets, between a planet and the sun, etc. One

such computation was made by Rabe following a
close approach of the minor planet Eros. The
second method is an indirect approach based on
Kepler, s third law (referred to in the literature

as the dynamical method}. The third method
employs the spectral shift of radiation from

stars produced by the motion of the earth.
Perturbations on the moon produced by the sun
constitute a fourth means of computing solar
parallax to good precision provided that the
ratio of the masses of the earth and moon is

well known. A fifth approach utilizes direct
measurements of distance between bodies in

space obtained from radar equipment.

Other approaches have also been advanced,
but the five listed constitute the most frequently
employed.

Table 1 presents the adopted value of solar
parallax (from Baker) along with the unweighted

mean of the data and the mean of the adjusted
sample. (Special note is made that the value

adopted by Baker corresponds most closely to
that of Rabe which has been widely utilized
during recent years.) The corresponding value
of the astronomical unit is also presented.

TABLE 1

Solar Parallax

Uncorrected

Adopted Mean and

by Standard
Baker Deviation

Solar parallax 8.798±
(sec) 0. 002

Astronomical 149.53_

unit (106 kin)
0. O3

Confidence ?
level

8. 7995±
O. 0049

149. 507 ±
0.083

99%

Adjusted
Mean and
Standard

Deviation

8.8002±
0.0024

149.495 ±
0.041

92%

The data in Table 1 show reasonably good
agreement between the various estimates.

However, it is interesting to note that the adjusted
mean moved away from the value adopted by
Baker. This behavior is undesirable but was not
unforeseen because of the limitations of the
method and the fact that more of the measure-

ments were situated in this direction. However,
most of the reported measurements were made
before 1945 and the general trend during subse-

quent years has been toward slightly lower values
of the solar parallax. If it is assumed that this

trend reflects increased accuracy in the measure-
ments (resulting in part from the availability of
radar data), and if the more recent measure-
ments are weighted by the time of determination
(since the uncertainty in the various measure-
ments is much larger than the quoted error in the
experiment), a value of solar parallax of 8. 7975 sec
± 0.0005 is obtained. This value is almost ident-

ical to Baker's which, as was noted, agrees with
that of Rabe (generally accepted by those perform-
[ng astronomical computations). For this reason,
and for consistency in calculations by various
groups within industry and the government, Baker' s
value of the solar parallax should be used. How-
ever, his assignment of probable error in this
constant apparently is too large in view of the
agreement of these data. A maximum uncertainty
of ± 0. 001 is more realistic.

b. Solar gravitational constant

In 1938 it was internationally agreed (IAU 1938)
that to maintain the Gaussian value of the solar

gravitational constant (Ks 2 = Gm O where G =

Universal gravitational constant) in spite of
changes in the definition of the sidereal year
and the mass of the earth, the astronomical unit

(AU) would be modified when necessary. Thus
the solar gravitational constant has remained.
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K
s

where

_. 3

_- 2_._ as

T m S
m +--

Q mQ

= 0.017, 202, 098, 95
AU3/2

day

a$ : 1 AU

_- = 365. 256, 383, 5 mean solar days

m solar mass = 1
O

m$ - ratio of earth mass to solar mass
m

Q = 0. 000,002,819

This value of K s is accurate to its ninth signifi-

cant figure by definition. The precision in this

determination is contrasted to the accuracy of a

determination in laboratory units from the fol-

lowing equation

2
K = Gm

s (_

where

G = the universal gravitational constant

in the cgs or English system of

units (mass in same system).

Utilizing even the most accurately known
values of G and m (obtained from Westrom) the

result is accurate only to its third place.

2 I[6 670 (1 +0 0007) 10-8 ]K s = .

• [1 9866 (1 ±0.007)1033]}

K = 1.511 (1 +0.0005) 1013cm3/2 /sec
s

The evaluation of K s in laboratory units using

the solar parallax proves equally as inadequate

since the uncertainty is large. When the adopted

value indicated in Table 1 is used, K s is found
to be

K = 1.1509 (1 ±0.00015) 1013crn3/2/sec
s

It is thus advantageous to compute in the

astronomical system of units, converting only

when necessary. This procedure assures that
the results will become more accurate as better

values for the astronomical unit are obtained

and produces a much lower end figure error due
to round-off.

3. Planetocentric Constants

a. Planetary masses

Planetary masses are significant in comput-

ing transfer trajectories to the planets and tra-
jectories about these bodies. The two most

common methods of determining planetary mass

are by the perturbation actions on other bodies

or by observations of the moons of the planet.

While the accuracies of the two approaches differ,

each involves such complex functions as near-

ness of approach, mass of the planets, size and

number of moons, etc., that no general conclu-

sion can be made as to the superiority of one to
the other.

Table 2 presents data reduced from deter-

minations of the mass of each of the planets in
terms of the solar mass, the related mass in

kilograms, and the probable uncertainty in the
measurement. In addition, since the number of

points in the sample varies from planet to planet,

this quantity is noted along with an estimate of
the confidence level for the result.

In each case shown in Table 2 the results ob-

tained with the adjusted sample approach those

of Baker to within the uncertainties quoted for
the masses and are practically identical. How-

ever, it should be noted that the uncertainties

quoted for these masses are different at times.

This discrepancy is believed to result from the

somewhat arbitrary handling of the limits in the
reviewed reference. On the basis of the data

available, it seems more proper to use the

standard deviation, as obtained from the adjusted
sample, rather than Baker's value.

b. Planetary dimensions

_rhile the physical dimensions of the planets

have no effect on the trajectories of interplanetary

vehicles and the dimensions are generally

smaller than the uncertainty in the astronomical
unit, the constants must be known for self-con-

tained guidance techniques and for impact and

launch studies. For these reasons the best shape

of the various planets will be discussed.

Table 3 presents equatorial and polar radii
and a quantity referred to in the literature as

the flattening which is defined to be

Re_uatorial -Rpolar

equatorial

The table also presents comparisons of various

data, the number of points in the sample and an
estimate of the confidence level.

The sample size for the planet Uranus is

questioned because Baker references only one

source for this planet and that is a weighted

average of several determinations. In the tabu-
lation on Mars, note should be made of the

excellent agreement on the best value of the

radius given by the statistical approach and by

Baker, and of the slight discrepancies in the un-
certainties of the radius and in the best value

of the flattening. Therefore, it is once again
proposed that Baker' s value of the radii and

flattening (with one exception) be utilized but

that the uncertainty obtained via statistics be

associated with this number. The exception

exists in the case of Mars for which it is pro-

posed that 1/f be 75 ± 12, rather than Baker's
value (150 ± 50) since this estimate is consistent

with the data.
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TABLE 2

Planetary Mass es

Planet

Mercury

Venus

Earth-Moon

Mars

Jupiter

Saturn

Uranus

Neptune

Pluto

Quantity of Interest,

Solar mass/mass of Mercury
Mass of Mercury in kg

Sample size
Confidence level

Solar mass/mass of Venus

Mass of Venus in kg
Sample size
Confidence level

Solar mass/earth-moon mass

Mass of earth-moon in kg
Sample size
Confidence level

Solar mass ]mass of Mars

Mass of Mars in kg
Sample size
Confidence level

Solar mass ]mass of Jupiter

Mass of Jupiter in kg
Sample size
Confidence level

Solar mass/mass of Saturn

Mass of Saturn in kg
Sample size
Confidence level

Solar mass/mass of Uranus

Mass of Uranus in kg
Sample size
Confidence level

Solar mass/mass of Neptune

Mass of Neptune in kg

Sample size
Confidence level

Solar mass/mass of Pluto

Mass of Pluto in kg
Sample size
Confidence level

Adopted by Baker

6,100, 000 ± 50,000

0. 32567 x 1024
4 --

407,000 ± 1,000

4. 881_.__1x 1024
6

328,450 = 50

6. 0484___1x 1024
6

3,090,000 ± 10, 000

6.04291 x 1024

6

1047.4 ± 0.I

1. 89670 x 1027
8

3500.0 ± 3

O. 56760 x 1027
4

32,800 ± 100

87.132x 1024
2 --

19,500 i 200

101.88 x 1024
3 --

350,000 • 50,000

5.6760 x 1024
3 --

Uncorrected Sample

6.400_000 i 630,000

0.31041x 1024

4
81%

406,200 • 1,900

4.890....__7x 1024
8

97%

328,500 • 100

6.0474_._.99x 1024
6
92%

3,271,000 ± 795,000

0.6073_.3.3x 1024
6

92%

1047.89 i 1.87

1.89581 x 1027
8 --

97%

3497.3 ± 4.5

0,56804 x 1027
4 --

81%

22,810 ± 60

87.093 x 1024
2 --

50%

19,500 ± 200

101.88 x 1024
3 --

70%

333,000 ± 27,000

5.9658 x 1024
3 --

70%

Adjusted Sample

6,030,000 ± 65,000

0.32945 x 1024

3
70%

407,000 • 1,300

4.881_..._1x 1024
6

92%

328,430 ± 25

6.0487_8x 1024
4
81%

3,092,000 ± 12,000

0.6425__00x 1024
4

81%

1047.41 ± 0.08

1.89670 x 1027
4 --

81%

3499.8 ± 1.7

0.56763 x 1027

3 --
70%

---

Underlined digits are questionable
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TABLE 3

Planetary Dimensions

Planet

Mercury

Venus

Mars

Jupiter

Saturn

Uranus

Neptune

Pluto

.Quantity of Interest

Equatorial radius (kin)
1If
Polar radius (km)

Sample size
Confidence level

Equatorial radius* (kin)
1/f
Polar radius (kin)

Sample size
Confidence level

Equatorial radius (kin)
I/f
Polar radius (kin)

Sample size
Confidence level

Equatorial radius (kin)

I/f
Polar radius (kin)

Sample size

Confidence level

Equatorial radius (kin)

i/f
Polar radius (km)

Sample size
Confidence level

Equatorial radius (kin)
i/f
Polar radius (km)

Sample size

Equatorial radius (kin)
1/f
Polar radius (kin)

Sample size
Confidence level

Equatorial radius (kin)
1If
Polar radius (km)

Sample size
Confidence level

Adopted by Baker

2,330 ± 15
?

?

4

?

6, i00 + I0
?

?
6

?

3,415 :_ 5
150 i 50

3, 392 :_ 12
9

?

71, 375 ± 50
15.2 i 0.1

66,679 :_ 50
2

?

60, 509 + 50
10.2i ?

54,569 i 45
2

?

24,850 • 50
?
?
?

25,000 i 250
58.5±?

24,573 • 250
2
?

3,000 ± 500
?
?
1
?

Uncorrected Sample

2,355 ± 39

?

4

81%

6, 154 • 10O

?
?
6

92%

3,377 ± 47
108.4 • 54

3, 346 ± 55
9

98%

71,375 ± 20
15.2 ± 0.1

66,679 e 50
2

50%

60, 160 ± 480
10.2i ?

54, 262 i 450
2

5O%

24,847 • 50
14 ± ? **

23,072 ± 50
?

24,400 ± 2100
58.5 • ?

23,983 ± 2000
2
50%

2,934 • 500

?
?
I

20%

Adjusted Sample

2, 333 i 11
?

?

3

7O%

6,106 i 12
?

?

3

70%

3,414 ± 12
75 ± 12

3,403 ± 12
5

88%

':'Equatorial radius for Venus includes the distance from the surface to the outer boundary

of the dense atmosphere.

**From K.A. Ehricke's book "Space Flight Trajectories. "
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As was the case with some of the planetary
masses, there was insufficient data available

to allow for refining dimensional computations

for all planets. Even where such computations

were possible the confidence level of the re-

sultant quantity was low.

c. Planetary orbits

Because the motion of a planet about the sun

approximates an ellipse for relatively long

periods of time, it has become standard practice

to express the paths in terms of an ellipse with

time-varying or osculating elements. To assure

that the terminology is familiar, the six ele-

ments (or constants of integration) necessary

to determine planetary motion are defined below.

(1) Planar elements

(1)

(2)

(3)

(2)

(i)

(2)

(3)

Semimajor axis (a)--This element

is a constant, being one-half the sum
of the minimum and maximum radii.

Element (a) is also a function of

radius and velocity at any point.

Eccentricity (e)--This element is re-
lated to the difference in maximum

and minimum radii and is used to

express a deviation in the path from

circularity.

Mean anomaly of epoch (M0)--This

element (referenced to any fixed
known time) defines the position of

the orbiting body in the plane of

motion at any time.

Orientation elements

Argument of perigee (_)--This is

the angle measured in the orbital

plane from the radius vector defining

the ascending node to the minimum
radius.

Orbital inclination (i)--This angle

expresses rotation of the orbital

plane about a line in the ecliptic

(or fundamental) plane.

Longitude of the ascending node (_)--

This is the angle measured in the

fundamental plane from a fixed ref-
erence direction to the radius at which

the satellite crosses the fundamental

plane from the south to the north.

These osculating elements obviously are of

primary importance in the computation of inter-

planetary transfer trajectories. Thus, the

procedure for obtaining these elements will be
reviewed; then the values of the elements will

be presented. It is assumed only that a table
of the time variation of acceleration is available.

One such table is presented in Planetary Coord-

inates 1960 to 1980 available through Her Majesty's

Stationery Office.

This reference quotes position and accelera-

tion components in ecliptic rectangular coordin-
ates. The most direct transformation is thus

via the vectorial elements P, Q and R (where r

points toward perihelion, Q in the direction of

the true anomaly equals 90 ° and R completes the

right handed set). The computation proceeds as

follows: First the velocity components at the

instant are computed. This is accomplished by

numerical integration of the acceleration com-

ponents rather than by differentiation of the

position data in order to obtain better accuracy.

Argument

t_ 2

t_ l

t 1

i
t2

Sums

2nd Ist

-1""

5 x 3/2

6-ix" 1/2

52_'0 I

6 i_'l/2

Function Differences

(Acceleration) 2nd 3rd 4th

x. 2

X'l

1st

6x 3/2 63x- 1/2

52x'- 1

6X_112

&2x'0

£,/2 {'_:_xI/2

_2 x 1

6x3 f2

64£ 0

Thus,.at the argument t o

"- ' [ ' .... ..]

where

w =the interval between points in mean solar

days

K = Gaussian constant
S

AU3/2

= 0. 017,202,098, 95 so-'0TST-day

p6-1x "= i/2 (6"Ix'_112 +6-1x'1/2)

,6x = 1/2 x_i/2 + i

bp 53x = 1/2 3x'-I/2 + /

and similarly for y and z.

Now

2 2 y2 z 2r = x + + (evaluated at t O)

2 -2 y2V =X + +

H =xx +yy +zz

1a - (1)
2/r - G 2

e sin E = HI a_" (2)

ecos E =rG 2 - 1 (3)

.....= (yz- _y)_,+ (zx- xz)_ + (xy- yx) 2
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_'_ _ i_ sin E + va I/2-e2Q = r r

• (cos E - e)

= r 1 cos E + va 1/2 sin E
r

And finally

sin i sin _ = R
X

(4)

sin i cos i] = - R cos _ - R sin
y z

cOS i = R cos c - R sin
z y

(5)

(6)

And

(1 ± cos i) sin (_ + i2) = ± P cos c
Y

+ Pz sin _ - Qx (7)

(I +cos i) cos (_12) --± Qy

+ Qz sin e + Px

COS E

(8)

where: _ - obliquity of the ecliptic of date given
below:

t = 1960 _ = 23°26'40.15 '' sin c = 0.39786035 cos c = 0.91744599

1962 23°26,39.21 " 0.39785618 0.91744780

1964 23°26'38.28" 0.39785291 0.91744960

1966 23°26'37.34" 0.39784784 0.9i745141

I968 23°26,36.40" 0.39784368 0.91745322

1970 23°26,35.93 '_ 0.39783951 0.91745503

Equations (1), '2) and (3) define a, e and E (analo-

gous to M) at the selected epoch. Then Eqs (4)

through (8) define the orbital planes and the quad-
rants of the three orientation elements.

Data for these six elements is presented in

Tables 4 and 5. These tables present each of the

six elements for a two-year period and the re-

gression and precession rates of the nodal angle

and the argument of perigee, respectively. These

data are accurate to the last quoted digit for the

quoted epochs and provide reasonably good ac-

curacy when linearly interpolated. In order to

maintain precision in such computations it is nec-

essary to have the elements evaluated at much
smaller time intervals.

4. Geocentric Constants

a. Potential function

The potential function of the earth (i. e. , the

relationship between potential energy and position
Gm

relative to the earth) is not simply - _--_as is

assumed in most Keplertan orbit studies because

this approximation assumes that the mass is

spherically symmetric. This assumption is suf-

ficiently accurate for many preliminary studies
but is not valid for precise orbital studies. For

this reason it is general practice to expand the

potential function in a series of Legendre polyno-

mials. The coefficients of this series may then
be evaluated from satellite observation.

Since the perturbations in the motion (i. e. ,

deviations due to the presence of the terms in-

volving mass asymmetry of the earth) are very
sensitive to the uncertainties in the coefficients

of the resulting potential function, one form of

this function will be presented and discussed.

The form selected, because of its simplicity and

the fact that it was recently adopted by the IAU
(1961), is that of J. Vintiofthe National Bureau

of Standards. The coefficients of other generally
used expansions will be related to this set in later

paragraphs.

2 1U - - _- - Jn P (sin L
r n

n=2

where

p =gravitational constant =Gm_

J = coefficients
n

R = equatorial radius of the earth

r = satellite radius

P (sin L) = Legendre polynomials
n

L = instantaneous latitude

The first

--P E1 J2U= r -72--

J3 3

J4

J5

few terms of this series are:

(_)2 (3 sin2 L- 1)

(5 sin 3 L - 3 sin L)

(35 sin 4 L - 30 sin 2 L + 3)

(63 sin 5 L - 70 sin 3 L + 15 sin L)

J 6 6
-= (_) (231 sin e L- 315 sin 4 ,_

+ 105 sin 2 L - 5) /

_]

As is immediately obvious, this function contains

the potential function for a mass spherically sym-
metric earth and a series of correction terms re-

ferred to as zonal harmonics. The odd ordered

harmonics are anttsymmetric about the equatorial
plane (L = 0) and the even ordered harmonics,

symmetric. This function was introduced merely

to aid in the discussion of the factors affecting

motion in geocentric orbits; therefore, the func-
tion as a whole will not be discussed further but

its coefficients will be treated.
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TABLE 4

Mean Elements of Inner Planets

(from American Ephemeris, 1960, 1961, 1962;
referred to mean equinox and ecliptic of date. )

Epochs: 1960 September 23.0 = J.D. 243 7200,5

1961 October 28.0 = J.D. 243 7600.5

1962 December 2.0 = J.D. 243 8000,5

Planet

Mercury

Venus

Mars

Year (de_) (de_) (de_)

1960 7.00400 + 1 47.86575 + 325 76.84441 +426

1961 7.00402 + 1 47.87873 + 325 76.86145 +426

1962 7.00404 + 1 47.89171 + 325 76.87849 + 426

1960 3.39424 + 0 76.32825 + 247 131.01853 + 385

1961 3.39425 + 0 76.33611 + 247 131.03394 + 385

1962 3.39426 + 0 76.34597 + 247 131.04934 + 385

1960 1.84993 + 0 49.25464 + 211 335.33609 + 504

1961 1.84992 + 0 49.26308 + 211 335.35625 + 504

1962 1.84991 + 0 49.27153 + 211 335.37641 + 504

M0$*a

(AU) e (deg) I

0.387099 0.205627 152.303

0.387099 0.205627 349.237

0.387099 0.205627 186.171

0.723332 0.006792 108.652

0.723332 0.006791 29.504

0.723332 0.006791 310.356

1.523691 0.093369 62.572

1.523691 0.093370 272.180

1.523691 0.993371 121.789

*Plus variation per 100 days.

**The large differences between the mean anomalies

not to perturbations.

at epoch are due primarily to the shift in the epoch and

TABLE 5

Osculating Elements of Outer Planets
(from American Ephemeris, 1960, 1961, 1962;

referred to mean equinox and ecliptic of date. )

Planet*

Jupiter 1960
1961

1962

Saturn 1960

1961

1962

Uranus 1960

1961

1962

Neptune 1960
1961

1962

Pluto 1960

1961

1962

i _ _ a

Date (de_) (de_) (de_) (AU) e

Jan. 27 1.30641 100.0560 12.3279 5.208041 0.048,335,1

Jan. 21 1.30626 100.0651 13.2393 5.203825 0.048,589,9

Jan. 16 1.30616 100.0725 13.2614 5.203520 0.048,459,7

Jan. 27 2.48722 I13.3161 92.1031 9.582589 0.050,548,4

Jan. 21 2.48718 113.3273 90.7422 9.580399 0.051,145,6
Jan. 16 2.48714 113.3385 89.3436 9.581007 0.051,778,3

Jan. 27 0.77236 73.7218 172.5311 19.16306 0.046,906,5

Jan. 21 0.77222 73.6971 172.8809 19.13202 0.045,282,3

Jan. 16 0.77221 73.6942 172.3515 19.11431 0.044,112,4

Jan. 27 1.77329 131,3233 25.9372 30.23803 0,003,139,4

Jan. 21 1.77325 131.3709 22.4739 30.17541 0.005,351,5

Jan. 16 1.77318 131.4144 26.5510 30.09783 0.007,911,7

Jan. 27 17.16644 109.8642 223.8342 39.52392 0.251,35532
Mar. 2 17.17057 I09.8943 224.3400 39.38437 0.249,400,9

Jan. 16 17.16791 109.8958 224.5629 39.29379 0.247,695,_

*Osculatin elements are given for every 40 days for Jupiter, Saturn,

80 days for Pluto.

Uranus and Neptune, and for every

M 0

(deg)

249.7967
278.7932
308.6768

188.9699
202.4677

216.0551

329.2259

333.0587
337.7453

191.3613

197.0665
195.1770

316.9810

317.9194

316.8914
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Since the earth is almost spherically sym-

metric, the Jn are all small compared to one (as

will be shown later); thus, the prime factor af-

fecting motion is the gravitational constant, _,

which is defined directly from Newtonian Mech-

anics as Grog h. Data for this constant were not

presented in the referenced paper (Baker) though

a value was adopted. For this reason a review
of some of the more recent determinations was

made and a comparison constructed (Table 6).

Baker' s value corresponds to that of Herrick
(1958) and no data were found which ascribe an un-

certainty or confidence level to this value. The

value corresponds very closely to mean of the ad-

justed sample; for this reason an estimated un-

certainty would be 40. 00004.

While HerrickTs value appears valid, a better

estimate in view of the work done by Kaula would
seem to be Kaula's value (or the mean of the ad-

justed sample which is the same). It is proposed,

therefore, that the value of p be 1.407648- 1016

0.000035"I016 ft3/sec 2 or 398,601.5 :_ 9.9 kin3/

2
sec . The selection of this constant, which is

obviously related to the mass of the earth-moon

system (previously adopted), does not produce
large inconsistencies due to the fact that the con-

version between solar mass and earth mass is ac-

curate to only four places, and to this order the

two answers agree.

The remaining coefficients, Jn' are related

to the earth's equatorial radius, the average ro-

tational rate of the earth, the gravitational con-

stant, and the flattening of the earth. For this

reason, it is clear that the arbitrary selection of

a set of constants will result in slight numerical
inconsistencies. However, these uncertainties

are small and of the same order as the uncertainty

in the numerical values of the J . Data for the J
n n

are presented in Table 7.

Baker's values of the Jn correspond almost

identically to those of the adjusted sample while

Kaula's do not for J4' J5 and J6' No satisfactory

TABLE 6

Gravitational Constant for the Earth

Date ft 3/sec 2 Author

16
1957

1958

1959

1959

1960

1961

1.407754 x 10

1.40 7639

1. 40760

1.40771

1.407645

1.4O765

Elfers (Project Vanguard)

Herrick

Je ffr eys

O' Keefe

Department of Defense (see Baker)

Kaula

Gravitational con-

stant (ft 3/sec 2)

(km3/sec 2)

Uncertainty (1)

(2)

Sample size

Confidence level

Adopted by Unadjusted Adjusted

Baker Sample Sample

l.407639 x 1016

398,599.9
1.407666 x 1016
398,606.6

1.407648 x 10

3980601.5

16

± 9

± ?

?

9

±O. 000050 x 1016

±14.2

6

92%

I0.000035 x 1016

_9.9

5

88%
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TABLE 7

Coefficients of the Potential Function

J2

a (J2)

Confidence level

J3

cr (J3)
Confidence level

J4

a (J4)
Confidence level

J5

(J5)
Confidence level

J6

a (J6)
Confidence level

Baker

1082.28 x I0 -6

±0.2 x 10 -6

?

-2.30 x l0 -6

±0.20 x 10 -6

?

-2.12 x l0 -6

I0.50 x l0 -6

?

-0.20 x 10 -6

±0.1 x 10 -6

?

I. 0 x 10 -6

-6
±0.8 x i0

?

Kaula

1082.61 x 10 -6

±0.06 x 10 -6

?

-2.05 x i0 -6

• 0. I0 x I0 -6

?

-1.43 x 10 -6

±0.06 x 10 -6

?

-0.08 x l0 -6

±0.11 x 10 -6

?

0.20 x 10 -6

• 0.05 x l0 -6

?

Uncorrected Sample

1082.396 x 10 -6

±0.241 x 10 -6

98%

-2.39 x 10 -6

±0.23 x l0 -6

98%

-1.82 x 10 -6

±0.35 x 10 -6

98%

-0.25 x l0 -6

±0.16 x 10 -6

92%

0,68 x l0 -6

±0.29 x 10 -6

81%

Adjusted Sample

1082.303 x I0 -6

±0.185 x 10 -6

95%

-2.39 x 10 -6

±0.23 x 10 -6

90%

-2.03 x 10 -6

±0.24 x 10 -6

92%

-0,19 x 10 -6

cO,08 x 10 -6

88%

0.83 x 10 -6

±0.10 x 10 -6

70%

reason was obtained for this difference, though
it is believed that the data utilized by Kaula in the

determination of J4' J5 and J6 may have been

biased. This conclusion is strengthened slightly
by the fact that the results of Kaula for these three
constants are somewhat below the majority of the
other independent determinations. Even if the un-
certainty in these three values is increased an
amount sufficient to include all values, no appre-
ciable change will be noted in the computation of
trajectories, since the numbers are very small
compared to unity and are even small compared

to J2"

It is proposed that the values adopted by Baker
be accepted without change. This procedure seems
justifiable on the basis of the data and has the ad-
vantage that the set is presumably consistent.
This advantage is not clear cut since, even though
the J's are interrelated, the uncertainties in the

n

values are relatively large.

At this point Vinti's set of coefficients will be
related to those utilized by other authors. Rather
than discuss each potential, however, the poten-
tials will be tabulated for comparison. Then, the
coefficients of the various terms will be equated.
This data is presented in Tables 8a and 8b.

b. Equatorial radius and flattening

The average figure of the earth is best repre-
sented as an ellipsoid of revolution (about the

polar axis) with the major axis the equatorial
diameter. Obviously this model is not exact;
however, the accuracy afforded is generally ade-
quate when computing the ground track of a satel-
lite, determining tracking azimuths, etc. For
this reason the best values for the parameters of
the ellipsoid are desired. These data are pre-
sented in Table 9 in the form of values of the

equatorial radius and flattening (previously de-
fined) along with polar radii, also for each pair of
values.

Although the discrepancies in the sets of data

shown in Table 9 are minor, they are sufficient
to justify the selection of one particular set.
Based on the data reviewed, it is felt that the

data of Kaula is probably slightly superior to the
remaining values. This conclusion is strength-
ened by the good agreement between Kaula and
some of the more recent standards. While this

is by no means conclusive proof, the fact indi-
cates a wide degree of acceptance. For this
reason, an estimate of the confidence level would
be greater than 90%.
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TABLE 8b

Comparisons of Constants Used in

Potential Functions

Vinti J2 J3 J4 Recommended

Laplace

Jeffreys

Kozal

Brouwer

OIKeere, Eckels, Squires

R. E. Roberson

Gar finkel

Struble

Krause

Sterne

Herget _d Manen

Proskurin sr_ Batrakov

W. deSttter

-B2/R 2 -B3/R 3 -B4/I14

2 A2 A4

] _ .A 3/1_3 8

2k2 8 k4

A3/a3 - _ R_

-A 2, _/_ IR 2 -A3, 0/u S 3 -A4, t}/_ R 4

2 _ None -8 _2

2k/R 2 None k I /H 4

8 k4

2k2/R2 None - _ R_

2B

R_ None No_

2k 2/S 2 None -8k 4/R 4

...... _.

TABLE 9

Equatorial Radius and Flattening

Equatorial radius (kin}

*If

Polar radius (kin}

= Req ( l -T'_'- )

Sample size

Confidence level

Uncorrected Adjusted

Baker Kaula Sample Sample

6378.150 6378.163 6378.215 6378.210

a0.050 ,0.021 _0.105 ±0.045

298.30 298.24 298.27 298.27

±0.05 ±0.01 _0.05 ±0.03

6356.768 6356.777 6356.831 6356.826

±0.050 ±0.021 ±0.105 ,0.045

9 ? 10 7

? ? 98% 95%

5. Selenocentric Constants

The determination of the lunar mass has been

made from the lunar equation (involved in the

reduction of geocentric coordinates to those of

the barycenter, i.e., the center of mass of the

earth-moon system), through the evaluation of

the coefficient, L, defined to be

mq

L ' - mo nO

1 + mq sin w_
m

where

n¢ is the lunar parallax (i.e.,

R_ equator ial )
average lunar distance

Since there are no lunar satellites whose orbits

can be used in determining lunar mass, the calcu-

lations for the most part have been based on ob-

servations of Eros at the time of closest approach.

The method consists of finding the solar and

lunar parallaxes, comparing the observed positions

of Eros when nearest the earth with an accurate

ephemeris, fitting the residuals to a smooth
curve that has the periodicity and zero points of

the lunar equation, and using the curve to im-

prove the adopted {,alue of L'. Once this is ac-

m{
complished -- is evaluated from the previous

m@

equation. Thus, the first step in the evaluation
of the lunar mass is the evaluation of the lunar

parallax or equivalently the lunar distance.

Baker presents data for the lunar distance

evaluated by several different methods. These

data have been used to produce Table 10.

TABLE 10

Lunar Distance

Lunar distance (kin)

Uncertainty (kin)

Lunar parallax (tad)

(sec)

Uncertainty (tad)

(see)

Sample size

Confidence level

Adopted Uncorrected Adjusted

by Baker Sample Sample

384,402

+1
0. 016, 592. 4

3422. 428

+0. 000, 000, 1

_.021

6

I

k°

384,402.6

_2.6

0.016,592,4

3422.428

+0.000,000, I

_.021

6

92%

384,401.6

+I.I

0.016,592,4

3422.428

+0,000,000,1

i.021

5

88%

The data of Table i0 all agree very well and

exhibit no inconsistencies of the type shown in

other data. For this reason it is believed that

Baker's value should be utilized as it is quoted

in Table I0. It is interesting to note that the

value of the lunar parallax and its uncertainty

were the same for all of the evaluations.

The next step in the evaluation of the lunar

mass is the determination of the best value of

the coefficient of the lunar equation. Once again

several values are available, each determined by

different individuals at different times. The re-

sults of the analysis of these data are presented

in Table Ii.

TABLE 11

Coefficient of Lunar Equation

Adopted Uncorrected Adjusted

hi, Baker Sample Sample

Coefficient Lt(sec) 6.4385 6.430 6.4381

Uncertainty (see) ±0. 0015 ±0,005 ±0. 0016

Sample size ? 8 6

Confidence level ? 87% 92%

Once again good general agreement is noted. It

is proposed, therefore, that the value of L' be
6. 4385 + 0. 0015 with a confidence level of about

90%. With this value of L' and that of lunar

parallax adopted in Table 10, the best value of
m

the quantity m+ is found as

m$ _ Trq) 1

m_ sm lr_ _ - 1

= 8. 798 8. 7981 - 1 = 81. 357
0.016592
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Theestimateoftheuncertaintyis obtainedby
differentiatingthis equationwithrespectto
andL'. It is notnecessaryto differentiatewith
respectto _(_sincethisconstantis knownto a
muchhigherprecision.

= 0.0098

ms
Thus the best value of the quantity -- is 81. 357

m{

+ 0. 010 with a confidence level of approximately

90%. This value was obtained using Baker's data

and is contrasted to his adopted value of 81.35 ±

0.05. Since the uncertainty of Baker's value
seems inconsistent, it is proposed that the value

and uncertainty developed here be utilized.

The remaining information required pertains

to the figure of the moon. The figure of the moon

is best represented by a triaxial ellipsoid with

the radii of lengths a, b and c where a is directed

toward the earth, e is along the axis of rotation

and b forms an orthogonal set. Very little data

are available for these lengths. Some informa-

tion, however, is presented in:

Alexandrov, I, "The Lunar Gravitational
Potential" in Advances in the Astronautical

Sciences, Vol. 5, Plenum Press (N. Y.),

1960, pages 320 through 324.

This reference gives data for determinations of

the dynamic dimensions and the methods of corn-
_utation as:

Forced

Libration

Sem[axis a(km) 1738.67 ± 0.07

Serniaxls b(km) 1738.21 ± 0.07

Semiaxis c(krn) 1737.58 ± 0.07

Free Adopted by

Libration Baker

1738.57±0.07 1738.57±0.07

1738.31 ± 0.07 1738.31 ± 0.07

1737.58 ± 0.07 1737.58 ± 0.07

There is no reason to assume a value other than

that of Baker due to the general lack of data.

6. Summary of Constants and Derivable Data

Because several values have been discussed

for each constant, there is need to combine in one

table the best value, its uncertainty and approxi-

mate confidence level. This is done in Table 12.

Note is made of the source of each number given.

In addition to a tabulation of constants, there

generally exists a requirement for data which

are easily derivable from this more basic data.
Table 13 presents the mass, the gravitational

constant (p = Gin) and the radius of action* in

metric, English and astronomical units. Table 14

2/5

*Tisserand's criteria, r* = d (M) where d

is the average distance between the two bodies,

m is the mass of the smaller body and M is the

mass of the larger body.

presents the geometry of the planets in metric

and English units, and Table 15 presents surface

values for the circular and escape velocities and

for gravity.

B. ASTROPHYSICAL CONSTANTS

In the previous section certain of the astro-

nautical constants were reviewed. The purpose

of this section is to include other factors affecting

the trajectory. Accordingly, atmospheric models

and density variability will first be discussed.
The discussions will then be oriented toward the

definition of other factors which must be con-

sidered in satellite orbit selection such as the

radiation and meteorid environments.

i. Development of Model Atmospheres for

Extreme Altitudes

In November 1953 an unofficial group of

scientific and engineering organizations, each

holding national responsibilities related to the

requirement for accurate tables of the atmosphere
to high altitudes formed the "Committee on the

Extension of the Standard Atmosphere" (COESA).

A Working Group, appointed at the first meeting,

met frequently between 1953 and the end of 1956.

This committee developed a model atmosphere
to 300 km based on the data available at that time.

This model was published in 1958 as the "U. S.
Extension to the ICAO Standard Atrnosphere,"

(Ref. i).

At the time of the development of this standard

only two methods of direct measurement of upper

atmosphere densities were available:

(1) High altitude sounding rockets.

(2) Observations of meteor trails.

Both methods have severe limitations in the

interpretation of the measured data. First, the

rocket made only short flights into the upper

atmosphere and.the density measurements were

made mostly inside the rocketls flow field, not
in the undistrubed free stream. Second, meteors

were visible only in a small range of altitude (85

to 130 kin) and their aerodynamic characteristics

contained too many unknowns {unsymmetrical

shapes, loss of momentum by evaporation of

melting surface layers, etc.).

The extent of the limitations of the rocket and

meteor trail data became evident with the launch-

ing of the first satellites. The orbital periods of

the first Sputnik indicated that the densities of the

upper atmosphere were off by approximately an

order of magnitude.

The Smithsonian 1957-2 atmosphere (Ref. 2)

was developed based on the density estimates

from the decay histories of the Sputnik satellites.
This standard was soon superseded by the ARDC

1959 ModelAtmosphere (Ref. 3). Up to about 50

km this atmosphere was the same as the U.S.
extension to the ICAO Standard Atmosphere.

Above that aititude some IGY rocket and early

satellite data were used. Since all these data

were obtained during the period of maximum

II- 15



TABLE 12

Adopted Constants

Heliocentric Constants

Solar parallax

Astronomical unit

Planetocentric Constants

Mercury

Solar mass/Bass Mercury

Equatorial radius

l/f

Venus

Solar mass/mass Venus

Equatorial radius

i/f

Earth-Moon

Solar mass�earth-moon

maaB

Equatorial radius

I/f

Mars

Solar BaSS/BaSS Mars

Equatorial radius

1/f

Jupiter

Solar Bass/Bass Jupiter

Equatorial radius

Ill

Saturn

Solar mass/mass Saturn

Equatorial radius

1/f

Best Value

a8.798 sec

a149.53x106km

c_.2959122083

AU3/solar day 2

a6,100,000

a2330 km

?

a407,000

a6100 km (incl

atmos)

?

a328,450

a3, o90, OOO

a3415 km

b75

ai047.4

a71,875 km

aIs. z

a3500

a60,500 km

a10.2

Uncertaint[

b±0.001

a±0.0S

a±0.010-10

b±65,000

b±ll

b±1300

b±12

b±25

b±12,000

b±12

b±12

b±0. I

b±20

b±0. I

b±2.0

b::L480

+ ?

I Approximate b
Confidence Level

(%)

90

90

99+

70

70

?

90

70

81

81

88

89

81

50

50

70

5O

?

(continued)

NOTE:

aBaker' s value.

bvalue obtained in this report.

CGaussian value.

dEhricke' s value.

eKaula' s value.
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TABLE 12 (continued)

Uranus

Solar mass/mass Uranus

Equatorial radius

1/f

Neptune

Solar mass/mass Neptune

Equatorial radius

1/f

Pluto

"Solar mass/mass Pluto

Equatorial radius

t/f

Geocentric Constants

p (kin3 /sec2}

J2

J3

J4

J5

J6

Equatorial radius (kin)

1/f

Selenocentric Constants

Lunar distance (kin)

L'

m® /me

Semiaxis a (kin)

b (kin)

c (kin)

Best Value

a22,800

a24, 850 km

a14.0

a19,500

a25,000 km

a58.5

a350,000

a3000 km

?

e398, 601.5

a1082.28x 10 -6

a-2.30 x 10 -6

a-2.12 x 10 -6

a-0.20 x 10 -6

a-1.0 x 10 -6

e6378. 163

e298.24

a384,402 km

a6.4385

b81.357

a1738.57 km

a1738.31 km

a1737.58 km

Uncertainty,

b±60

b±50

± ?

b±200

b±2100

± ?

b±27,000

b±500

e±9.9

a±0.2 x 10 -6

a+0.2 x 10 -6

a±0.5 x 10 -6

a±0.1 x 10 -6

a±0.8 x 10 -6

e±0. 021

e±o. Ol

a±l km

a±0.0015

b±o. 01

a±0.17 km

a±0.07 km

a±0.07 km

Approximate
Confidence Level b

(%)

5O

?

?

70

50

?

70

20

?

88

95

90

92

88

70

95

95

88

92

9O

5O

5O

5O

NOTE:

asaker's value.

bvalue obtained in this report.

CGaussian value.

dEhricke's value.

eKaula' s value.
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solar activity, the resulting model was more

representative of these conditions than average
atmospheric properties. An example of the effect

of solar conditions on upper atmosphere density
is shown in the following sketches taken from
Ref. 4. These sketches show the data calculated

from the orbits of Explorer IX compared to
earlier satellite data and the 1959 ARDC Model

Atmosphere. Also shown are the portions of the

solar sunspot cycle represented by the data.

.....Io, .7,>'

_o

<

0 1951 & 1 Exph_rer IV

D 1_}:_8 _3 2 Vanguard I

z_ If_r,_ a I:xph,rer I
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A_I){ ¸ E_ _de_

l L I

_- !'ert,,a ,t _b{ n,,,.el

• /

iI

/
,I ,_... I
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A new COESA Working Group was convened in

January 1960. Using data and theories from more

recent satellite and rocket flights, the Working

Groups prepared a new standard atmosphere that

was accepted by the entire committee on March

15, 1962 (1Ref. 5). This newU. S. Standard

Atmosphere depicts a typical mid-latitude year-
round condition averaged for daylight hours and

for the range of solar activity that occurs between

sunspot minimum and maximum. Supplemental

presentations are being developed to represent
variability of density above 200 km with solar

position and a set of supplemental atmospheres

that will represent mean summer and winter con-

ditions by 15 ° latitude intervals to an altitude of
90 kin.

a. U.S. StandardAtmosphere--1962

The U.S. Standard Atmosphere--1962 was

developed by four Task Groups of the Working

Group of COESA. (Although U. S. Standard

Atmosphere--1962 is the general terminology,
the Working Group considers the region above 32

km as "tentative" and above 90 km as "specu-
lative. ") The recommendations of Task

Group I for the region from 20 to 90 km were

adopted. However, Task Group IV was appointed

to resolve the discontinuity and inconsistency of
the models prepared by Task Groups II (70 to

200 km) and III (200 to 700 kin). The reports

of Task Groups I and IV (Refs. 6 and 7) have been

used extensively in describing the new atmosphere.

Suggestions agreed upon by the Working Group

were that up to 79. 006 geopotential km (80. 000

geometric km using the ICAO gravity relations)
geopotential altitude would be the basic height

measure. Geometric heights would be basic

above this level. Above 20 km {the top of the

ICAO Standard), temperature lapse rate is posi-

tive at 1 deg/km to 32 kin. This gives a value of

228.66 which is in good agreement with measure-

ments. From 32 to 90 km, the temperature lapse

would be linear in geopotential height with changes

(of whole or half degrees Celsius) to occur at

whole kilometer levels. A 5-km isothermal layer

(268.66 °K) at 50 km was suggested, and densities

close to 1 g/m 3 and 0.02 g/m 3 at 50 and 80 km

(geometric), respectively were recommended.

Re-examination of constants from those used

previously resulted in new proposed values as
follows :

ICAO U,S. l_xt Pr_posed lTnils

Universal gas constant 8,31436 8.31439 8.3]470 b_nles/g-deg

Speed (_f sc)ulld 331.43 331.316 331.317 m/see at 0 ° (_

Sutherland's constant 120.0 110.4 110.4 Cg

The new value of the gas constant decreases

temperature values by 0.01 ° (0 ° C = 273. 15 ° K)

and density and pressure values. The differences
are summarized in Table 16 (from Ref. 6). The

column labeled "N" is the adopted revision, while
"H" and "D" refer to earlier revisions. The

speed of sound at 0 ° C also changes slightly and
the new relationship is

C S = 20.046707T1/2 m/sec, Tin°K

The dynamic viscosity, p, is slightly changed by
the new value for Sutherland's constant, S, so

that

p = 1.458 x 10 -6 T 3/2 / (T + S)

In analyzing the temperature and density obser-

vations an average temperature of 270.65 ° K was

indicated at 50km, meeting the requirements of

linear temperature lapse (above 32 km) that fit

the observed data then placed the isothe_'mal

region at 47 kin. The value of density at 50 km

fell within the suggested value of the Working

Group. From 30 to 50 km the new temperature

profile is between the mean annual measured

temperature for high and low latitudes as indi-

cated in Fig. 2 (from Ref. 6). Above the iso-

thermal layer, two temperature lapse regions

define temperature to the next isothermal layer
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TABLE 16

Comparison of Properties of ICAO, U. S. Extension, ARDC

1959 Model and U. S Standard Atmospheres--1962

Height [ Temperature

Geopot [U.S. H×t ARDC

(kln) I 56-58 59 'rld"

88.743 _ 196.86

0.0

79.006 196.86

0.0

79.000 196.86

0.0

75.000 196.86"

-3.9

61.000 251.46

-3.9

54.000 278.76

-3.9

53.000

52.000

49.610

48.000

47.000

32.000

25.000

20.000

ii.000

0.00O

282.66* = 282.66*

0.0

282.66

0.0

282.66

0.0

282.66

O,O

ICAO

216.66 =

0.0

216. 66*

-6.5

288. 16

,,N,I

165.66 190.65 180.65

0. O 0.0 0.0

165.66 190.65 180.65

0.0 0.0 0.0

165.66" 190.65" 180.65"

-4.5 -3.2 -4.0

183.66 203.45 196.65

-4.5 -3.2 -4.0

246.66 248.25 252.65

-4.5 -3.2 -2.0

278.16 270.65* 266.65

-4.5 0.0 -2.0

270.65 268.65

0.0 -2.0

270.65 = 270.65*

0.0

268.66 270.65

0.0 0.0

268.66* 270.65

+2.5 0.0

282.66* 266.16 270.65*

+3.0 +2.5 +2.8

237.66 228.66* 228.65*

+3.0 +1.0 +1.0

216.66" 221.66 221.65

0.0 +i.0 +l.O

216.66 - 216.66, 216.65,

0.0 0.0

216.66" 216.65"

-6.5 -6.5

288.16 288.15

Pressure (tub's x l0 n )

U.S. Fxt ARDC
56-58 59 "II" "N" n

2,258 1.353 1.8980 1.6437 -3

1.224 1.008 1.0868 1.0364 -2

1.225 1.009 1.0879 1.0376 -2

2,452 2.1707 2.1771 2.1420 -2

2,0934 2,0372 1.8224 1.8209 -1

5.1637 5.1630 4.5834 4.5748 -i

5.8320= 5.8320 5.2001 5.1977 -1

ICAO

Density (g/m 3 x l0 n )

J.S. ]-:xt ARDC

56-58 59 "H" "N" n

3.995 2.846 3.4682 3.1698 -3

2.165 2.120 1.9859 1.9986 -2

2.167 2.122 1.9879 2.0009 -2

4.3394 4.1176 3.7279 3.7946 -2

2.9002 2.8774 2.5574 2.5108 -i

6.4534 6.4664 5.8996 5.9769 -1

7.1881 =7.1881 6.6934 6.7401 -1

6.5813 5.8997 = 5.8997 -1

8.7858 7.9969

1.0673 9.5880

1.2044 1.0895

8.6776 8.6800

2.4686

5.4749 5.4748= 5.4748

2.2632= 2.2632

7.9772 -1

9.7748 -1

1.1090 +0

8.6798 +O

2.5110 +1

ICAO

5.4747 +1 8.8035

2.2632 +2 3.6392

1.01325 1.01325+3

8.1113 7.5939= 7.5939 -1

1.0829 1.0370 1.0268 +0

1.3155 1.2433 1.2582 +0

1.4845 1.4261 1.4275 +0

1.2721 1.3225 1.3225 +1

4.0016 3.9464 +1

8.8034 = 8.8034 8.8033 +1

3.6391 3.6392 +2

1.2250 -1.2250 1.2250 +3

*Breakpoint in temperature gradient, given in deg/km.

79 km (geopotential). The upper segment 61 to 79

(km) is based upon observed densities which have

been considered more reiiable than measured

temperatures. Adopted temperatures are seen to

be at least 20 ° colder than reported temperatures

near 80 km. The isothermal layer of 180.65 ¢ K

above 79 km provides continuity for density in the

region above the isothermal layer. The new density

value at 80 km (geometric) agrees very closely

with the target value. The properties of this por-

tion of the new standard atmosphere are shown on

Table 17 (from Ref. 6).

The basic obstacle to a consistent, continuous

standard atmosphere above 90 km was the de-

velopment of a mean molecular weight (M) profile

for the atmospheric gases together with a mole-

cular scale temperature T M profile with linear

lapse rates which would give the secondary atmos-

pheric parameters in agreement with theoretical

and empirical data.

The boundary conditions applied to the model

were:

(i) The density, pressure and temperature

at 90 km must coincide with those of

Task Group I, nameIy: density 3. 1698

x 10 -6 kgm/m 3, pressure 1. 6437 x 10 -3

millibars, molecular scale temperature

180.65 ° K.

(2) The density at 200 km should lie within

10 -10the range 3.3 ± 0.3 x kgm/m 3 for

mean solar conditions.

(3) The model should agree as closely as

possible with the densities in the altitude

range 90 to 200 km recommended by

Task Group II and based on rocket and

satellite data.
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of the U.

Kilometers

Geomet Geopot

90.000 88.743

89.235 88.000

87.179 86.000

85.125 84.000

83.072 82.000

81.020 80.000

79.994 79.000

78.969 78.000

76,920 76.000

74,872 74.000
72.825 72.000

70.779 70.000

68.735 68.000

66.692 66.000

64.651 64.000

62.611 62.000

61.591 61.000

60.572 60.000

58,534 58.000

56.498 56.000

54.463 54.000

52.429 52.000

50.396 50.000

48.365 48.000

47.350 47.000

46.335 46.000

44,307 44.000

42.279 42.000

40,253 40.000
38.229 38.000

36.205 36.000
34.183 34.000

32.162 32.000

30.142 30.000

28.124 28.000

26,107 26.000

24.091 24.000

22.076 22.000

20,063 20.000

18.051 18.000

16.040 16.000

14.031 14.000

12,023 12.000

11,019 11,000

10,016 10,000

8,010 8.000

6,006 6,000

4,003 4.000

2.001 2.000

0,000 0.000

Temperature
Grad °K

0.0 180.65

180.65

180. 65
I 180.65

180.65

1 180.65

*** 180.65

-4.0 184.65
192.65

200.65
208.65

216.65

224.65

232.65

240.65

248.65

*** 252.65

-2.0 254.65

258.65

262.65

i 266.65

,:,** 270.65

0.0 270.65

0.0 270.65

*** 270.65

+2.8

+1.0

.,..,..,.

0.0

.... ,..,.

-6.5

267.85

262.25

256.65

251.05

245.45
239.85

234.25

228.65

226.65

224.65

222.65

220.65

218.65

216,65

216.65

216.65
216.65

216.65

216.65

223.15

236.15

249.15

262.15

275.15

288.15

TABLE 17

Properties, to 90 km,

S. Standard Atmosphere--1962

Pressure

(rob x l0 n)

1.6437

1.8917
2.7613

4.0307

5.8836

8.5883

1.0376

1.2512

1.7975

2.5444

3.5530

4.8994

6.6776

9.0034

1.2017

1.5889

1. 8209

2.0835

2.7190

3.5339

4.5749

5.8997

7.5940

9.7748

1. 1090

1.2591

1.6294
2.1203

2.7752

3.6544

4.8430

6.4610

8.6798

-3

-2

1

-1

I'

+0

F

+11.1718

1.5862

2.1530

2.9304

3.9997

5.4747

7.5045 I

1.0287 + 2

1.4101

1.9330

2.2632

Density

n (gm_" 10_

3. 1698

3. 6480

5. 3250

7. 7729

1. 1346

1. 6562

2. 0009

2. 3606
3. 2504

4. 4176
5. 9322

7. 8782

1. 0355

1. 3482

I. 7396

2. 2261

2. 5108

2. 8503

3. 6622

4. 6873

5. 9769

7. 5939

9. 7747

1. 2582

1. 4275

1. 6376

2. 1645

2. 8780

3. 8510
5. 1867

7. 0342

9. 6086

1. 3225

1. 8011

2. 4598

3. 3687

4. 6266

6. 3726

8. 8033

1. 2067

1. 6541
2. 2674

3. 1082

3. 6392

4. 1282

5.2519

6. 5973

8. 1916

1. 0065
1. 2250

n

-3

'r

-2

'r

-1

2.6443

3.5601

4.7183 ,
6.1642

7.9496
10.1325 _'

***Altitude at which temperature gradient expemenees discontinuity.

,f

-1
+0

ip

+1

,[

+1

+2

+2

+3

+3

Sound Speed

2.6944

2.6944

2.6944

2.6944
2.6944

2.6944

2.6944

2.7241

2.7825

2.8396

2.8957

2.9507

3.0047

3.0577

3.1098

3.1611

3.1864

3.1990

3.2240

3.2489

3.2735

3.2980

3.2980

3.2980

3.2980

3.2809

3.2464

3.2115
3.1763

3.1407

3.1047

3.0682

3.0313

3.0180

3.0047

2.9913

2.9778

2.9643

2.9507

2.9507

2.9507

2.9507

2.9507

2. 9507

2.9946

3.0806

3.1643
3.2458

3.3253
3.4029

Dyn Visc

(_m__. 102_

_,m- sec /

1.2163

1.2163

1.2163

1.2163
1.2163

1.2163

1.2163

1.2399

1.2865

1.3323
1.3773

1.4216

1.4652

1.5082

1.5505

1.5922

1.6128

1.6230

1.6434

1.6636

1.6837

1.7037

1.7037

1.7037

1.7037

1.6897

1.6616

1.6332

1.6045
1.5756

1.5463

1.5167

1.4868

1.4760

1.4652

1.4544

1.4435

1.4326

1.4216

1.4216

1.4216

1.4216

1.4216

1.4216

1.4571

1.5268

1.5947
1.6611

1.7260
1.7894
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(4) At higher altitudes the density should
match satellite density data under mean

solar conditions and agree as closely

as possible with the density values rec-
ommended by Task Group III.

(5)

(6)

The molecular scale temperature gra-

dients dTM/dZ should be linear and

kept to a maximum of two significant

figures and, where possible, to one

significant figure.

The number of breakpoints or segments

in the TM(Z) function should be kept to

a minimum, consistent with accurate

representation of the properties of a

mean atmosphere.

(7) The value of T at 150 km should be as

low as possible, consistent with the ob-

served density values, to give some

weight to Blamont,s measurement of T

at this altitude. (These temperature
measurements are not consistent with

temperatures deduced from density
measurements. )

(8) The value of dT/dz should approach
zero above 350 km.

(9) The value of T above 350 km should lie

in the range 1500 ± 200 ° K.

b. Properties

The model defined in terms of molecular-scale

temperature as a function of geometric altitude is

shown in Fig. 3 (from Ref. 7) together with the

corresponding defining functions for the ARDC
1959 model and the current U.S. standard atmos-

phere (ARDC 1956). In Fig. 4 (from Ref. 1) the

adopted profile (up to 300 kin) is compared with

profiles deduced from several types of observa-
tions.

The gradients dTM/dZ increase steadily from

0 ° K/kin at 90 km to a maximum value of 20 ° K/km

between 120 and 150 km, then steadily decrease to

5 ° K/kin at 200 km and finally to 1.1 ° K/km at 600

kin. Because of the requirement that dT/dz tend

to zero above 350 kin, dTM/dZ must be maintained

at a small positive value determined by the rate of
decrease of M in the same region. WhendT/dz = 0

dTM/dZ = - T/M 2 (dM/dz)

where dM/dz is negative

Figure 5 (from Ref. 1) presents density versus

geometric altitude for the new standard compared
with some U.S. and Russian data and the 1959

ARDC Model Atmosphere. A comparison of the

pressure versus altitude curves for the new U.S.

standard atmosphere with other standards is pre-

sented in Fig. 6 (from Ref. 1). Figure 7 (from

Ref. 7) is a comparison of the molecular weight
versus altitude for the different standards. A

table of the defining properties of the 90- to 700- km

portion of the U.S. Standard Atmosphere 1962 is

presented in Table 18 (from Ref. 1). Table 19

(from Ref. 1) shows the detailed properties of

this upper part of the new atmosphere. A brief
outline of the new standard from 0 to 700 km in

skeleton form is presented in Table 20 (from Ref.

1). This table is included along with the data of

Table 19 because of its compact form and be-

cause of the fact that other data is also presented.

TABLE 18

Defining Properties of the Proposed

Standard Atmosphere

z TM L

(km) _K) _K/km)

90 180.65

+3

100 210.65

+5
Ii0 260.65

+10

120 360.65

+20

150 960.65

+15

160 ili0.65

+10

170 1210.65
+7

190 1350.65

+5
230 1550.65

+4

300 1830.65

+3.3

40O 2160.65

+2.6
!500 2420.65

+1.7
6OO 259O.65

+I.i

700 2700.65

M T

28.966 180.65

28.88 210.02

28.56 257.00

28.07 349.49

26.92 892.79

26.66 1022.2

26.40 1103.4

25.85 1205.4

24.70 1322.3

22.66 1432.1

19.94 1487.4

17.94 1499.2

16.84 1506.1

16.17 1507.6

z = geometric altitude

T M = molecular scale temperature = TM0/M

T = kinetic temperature

M = mean molecular weight

M 0 = sea-level value of M

L = dTM/dZ, gradient of molecular scale

temperature

2. Density Variability

a. Measurements

Variations in density of the upper atmosphere

affect the orbital lifetime and re-entry of satel-
lites. For these reasons considerable attention

has been given recently to evaluation of these
variations.

Tidal variations in the atmosphere are at-

tributed to gravitational variations caused by

the sum and moon. This tidal energy is supplied
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Z

(km)

9O

92

94

96

98

100

I02

104

106

108

110

112

114

116

118

120

122

124

126

128

130

132

134

136

138

140

1 42

144

146

148

150

152

154

156

158

160

162

164

Z =

H =

TABLE 19

Defining Molecular Scale Temperature and Related Properties

TM L

(oK) (°K/km)

180.65 I
186.65

192.65 3.0

198.65
204.65

210.65 I
220.65

230.65 5.0

240.65

250.65

260.65 i

280.65

300.65 10.

320.65 1
340.65

360.65

400.65 I

440.65

480.65

520.65 i
I

560.65

600.65

640.65

680.65 20.

720.65

760.65

800.65

840.65

880.65

920.65

960.65 I

990.65

1020.65 15.

1050.65

1080.65

1110.65
1130.65 10.

1150.65

for the U. S. Standard Atmosphere--1962

II
P

{km)

5. 438

5. 623

5. 807

5. 991

6. 176

6. 361

6. 667

6. 974

7. 280

7. 588

7. 895

8. 507

9. 117

9. 731

10.34

10.96

12.18

13.41

14.63

15.86

17.09

18.32

19.55

20.78

22.02

23.25

24.49

25.73

26.98

28.22

29.46

30.39

31.34

32.28

33.22

34.17

34.80

35.44

(mb x i0 n) n

1.6437 -3

1.1448

8.0674 -4

5.7476

4.1372

3.0070

2.2119

1.6497

1.2460 [

9.5205 -5

7.3527 -5

5.7609

4.5908

3.7127 i

3.0418

2.5209

2.1204

1.8133

1.5721

1.3787 1

1.2210 -5

1.0905 _

9.8118 -6

8.8852

8.0923

7.4079

6.8124

6.2908

5.8310

5. 4233 v

5.0599 -6

4.7328

4.4359

4.1655

3.9187

3.6929

3.4848

3.2919 _'

(ram Hg

x i0 n) n

-3

-4

-5

-6

11

-6

P

LoglOP/Po(mk-k-k-_3 • 10n)n

1.2329

8.5869

6.0511

4.3110

3.1031

2.2554

1.6591

1.2374

9.3456

7.1410

5.5150

4.3210

3.4434

2.7848

2.2816

1.8909

1.5904

1.3601

1.1792

1.0341

9.1584

8.1797

7.3595

6.6645

6.0697

5.5563

5.1098

4.7185

4.3736

4.0678

3.7952

3.5499

3.3272

3.1244

2.9393

2.7699

2.6138

2. 4691

-5.7899 3.

-5.9496 2.

-6.0990 1.

-6.2462 1.

-6.3890 7.

-6.5276 4.

-6.6610 3.

-6.7883 2.

-6.9102 1.

-7.0271 1.

-7.1393 9.

-7.2452 7.

-7.3438 5.

-7.4360 4.

-7.5226 3.

-7.6042 2.

-7.6793 1.

-7.7472 I.

-7.8092 1.

-7.8663 9.

-7.9190 7.

-7.9681 6.

-8.0140 5.

-8.0571 4.

-8.0977 3.

-8.1360 3.

-8.1724 2.

-8.2070 2.

-8.2400 2.

-8.2715 2.

-8.3016 1.

-8.3306 1.

-8.3587 1.

-8.3861 1.

-8. 4126 1.

-8. 4384 1.

-8. 4635 1.

-8.4883 9.

L°gl0P/P o

1698 -6

1368

4589

0080

0428 -7

9731

4924

4918

8038

3233 _

8277 -8

1512

3196

0338

1109

4352

8435

4336

q,
1395

2254 -9

5873 -9

3252

3357

5478

9121

3929

9643

6071

3067

[0522

8350 -9

6644

5141

3812

2633

1584

0738 r

9669 -10

-5.5871

-5.7584

-5.9241

-6.0847

-6.2404

-6.3915

-6.5450

-6.6916

-6.8320

-6.9665

-7.0957

-7.2338

-7.3623

-7.4824

-7.5953

-7.7016

-7.8224

-7.9317

-8.0314

-8.1232

-8.2080

-8.2871

-8.3610

-8.4303

-8.4957

-8.5576

-8.6162

-8.6720

-8.7251

-8.7759

-8.8245

-8.8669

-8.9080

-8.9479

-8.9866

-9.0243

-9.0572

-9.0896

geometric altitude

geopotential altitude

RZ

R+Z R = radius of earth at 45 ° 32' 40" = 6356. 766 km
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Z

(km)

166

168

170

172

174

176

178

180

182

184

186

188

190

192

194

196

198

2OO

202

2O4

206

208

210

212

214

216

218

22O

222

224

226

228

230

232

234

236

238

240

242

TM L

(°K) (°K/km)

1170.65 }

1190.65 10.0

1210.65
JL

1224.65

1236.65

1252.65

1266.65

1280,65 7.0

1294,65

1308.65

1322.65

1336.65

1350.65 1

1360.65 i

1370.65

1380.65

1390.65

1400.65

1410.65

1420.65

1430.65

1440.65

1450.65 5.0

1460.65

1470.65

1480.65

1490.65

1500.65

1510.65

1520.65

1530.65

1540.65 i

1550.65 1

1558.65 I
i

1566.65

1574.65 4.0

1582.65

1590.65

1598.65

H
P

(km)

38.08

36.72

37.36

37.81

38.27

38.73

39.18

39.64

40.10

40.55

41.01

41.47

41.93

42.27

42.61

42.94

43.28

43.62

43.96

44.30

44.63

44.97

45.31

45.65

45.99

46.33

46.68

47.02

47.36

47.70

48.04

48.39

48.73

49.01

49.29

49.58

49.86

50.14

50.43

TABLE 19 (continued)

P

(mm Hg

(rob x I0 n ) n x 10 n) n

3.1128

2.9464

2.7915

2.6468

2.5113

2.3841

2.2648

2.1527

2.0474

1.9483

1.8551

1.7673

1.6845

1.6064

1.5324

1.4624

1.3961

1.3333

1.2738

1.2173

1.1638

1.1130

1.0647

1.0189

9.7542

9.3407

8.9475

8.5735

8.2177

7.8721

7.5567

7.2497

6.9572

6.6782

6.4119

6.1577

5.9149

5.6830

5.4614

-6 2. 3348

2. 2100

-6 2. 0938

1. 9853

1. 8836

1. 7882

1. 6987

1. 6147

1. 5357

1. 4614

1. 3914

lr
1. 3256

-6 1. 2635

1. 2049

1. 1494

1.0969

1. 0472

i. 0001

9. 5541

9. 1307

8. 7291

1 8. 3480

-6 7. 9862

7. 6427

-7 7. 3163

7. 0061

] 6. 7112

i 6. 4307
I

6. 1638

5. 9046

5. 6680

r 5.4377

-7 5.2183

5.0091

4.8093

4.6187

4.4366

4.2626

,r
4. 0964

-6

-6

'r

-6

-7

i

-7

P

LOgl0p/p0 (mk-k-k_3• 10n)n LOglop/po

-8.5126

-8.5364

-8.5599

-8.5830

-8.6058

-8.6284

-8.6507

-8.6727

-8.6945

-8.7161

-8.7374

-8.7584

-8.7793

-8.7999

-8.8204

-8.8407

-8.8608

-8.8808

-8.9006

-8.9203

-8.9399

-8.9592

-8.9785

-8.9976

-9.0165

-9.0353

-9.0540

-9,0726

-9.0910

-9.1092

-9.1274

-9.1454

-9.1633

-9.1811

-9.1987

-9.2163

-9.2338

-9.2511

-9.2684

9.2637 -10

8.6211 -10

8.0330 -10

7.5296

7.0632

6.6307

6.2292

5.8562

5,5094

5,1868

4.8863

4.6062

4.3450 -10

4.1130

3.8950

3.6901

3,4975

3.3163

3,1458

2.9852

2.8340

2.6915 ,r

2.5571 -i0

2.4303

2.3107

2.1978

2.0911

1.9904

1.8952

1.8051

1.7200

1.6394 I

1.5631 -i0

1.4927

1.4259

1.3624 I

1.3020

1.2447

I. 1902 I

-9.1214

-9.1526

-9.1833

-9.2114

-9.2391

-9.2666

-9.2937

-9.3205

-9.3470

-9.3732

-9.3992

-9.4248

-9.4502

-9.4740

-9.4976

-9.5211

-9.5444

-9.5675

-9.59O4

-9.6132

-9.6358

-9,6582

-9,6804

-9.7025

-9.7244

-9.7462

-9.7678

-9.7892

-9.8105

-9.8316

-9.8526

-9.8735

-9.8942

-9.9142

-9.9341

-9.9538

-9.9735

-9.9931

-10.0125
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Z

(km)

244

246

248

250

252

254

256

258

260

262

264

266

268

270

272

274

276

278

280

282

284

286

288

290

292

294

296

298

300

305

310

315

320

325

330

335

340

345

TM L

(°K) (°K/kin)

1606.65 4.0

1614.65 !

1622.65

1630.65

1638.65

1646,65

1654.65

1662.65

1670.65

1678.65

1686.65

1694.65

1702.65

1710.65

1718.65

1726.65 'r

1734.65 4.0

1742.65

1750.65

1758.65

1766.65

1774.65

1782.65

1790.65

1798.65

1806.65

1814.65

1822.65

1830.65

1847.15 !

1863.65

1880.15

1896.65

1913.15 3.3

1929.65

1946.15

1962.65

1979.15 I

H
P

(kin)

50.71

50.99

51.27

51.56

51.84

52.13

52.41

52.70

52.98

53.27

53.55

53.84

54.13

54.41

54.70

54.99

55.28

55.57

55.86

56.15

56.43

56.73

57.01

57.31

57.60

57.88

58.18

58.47

58.76

59.38

60.00

60.62

61.25

61.88

62,50

63.13

63.76

64,40

TABLE 19 (continued)

(mm Hg

(rob x l0 n ) n x l0 n ) n

5.2496 -7

5.0471

4.8535

4.6683 -7

4.4912

4.3217

4.1594

4.0041
1

3.8554

3.7130

3.5765

3.4457

3.3204

3.2003 -7

3.0851

2.9746

2.8686

2,7670

2.6694
I

2. 5758 i

2.4858 !
i

2.3995 i

2.3166 I

2.2369 -7

2.1604

2.0868

2.0162

1.9482

1.8828

1.7300

1.5910

1.4644

'[1.3491

1.2438 -7

1.1477 1
1.0599

9.7957 -8

9.0604

3. 9375 -7

3. 7856

3. 6404 i

3. 5015 -7

3.3687

3. 2415

3. 1198

3. 0033

2. 8918

2. 7849

2. 6826

2. 5845

'r2. 4905

2. 4004 -7

2. 3140

2. 2311

2. 1517

2. 0754

2. 0022

1. 9320

1. 8645

1. 7998

Ir
i. 7376

1.6778 -7

1. 6204

i. 5653

1. 5122

1. 4613

1. 4122

I. 2976

1. 1934

1. 0984

1.0119

9. 3293 -8

8. 6086

7. 9499

7. 3474

6. 7958

P

L°gloP/Po (_3 "

-9.2856

-9.3027

-9.3197

-9.3366

-9.3534

-9.3701

-9.3867

-9.4032

-9.4197

-9.4360

-9.4523

-9.4684

-9.4845

-9.5005

-9.5165

-9.5323

-9.5480

-9.5637

-9.5793

-9.5948

-9.6103

-9.6256

-9.6409

-9.6561

-9.6712

-9.6862

-9.7012

-9.7161

-9.7309

-9.7677

-9.8041

-9.8401

-9.8757

-9.9110

-9.9459

-9.9805

-10.0147

-10.0486

1. 1383 -10

1. 0890

1. 0421

9.9738 -11

9. 5485

9. 1434

8.7576

8. 3901

8. 0397

7. 7058

7. 3874

7. 0837

6. 7940 1

6. 5176 -11

6. 2537

6. 0018

5.7613

5.5316

5. 3122

5. 1025

4. 9021

4. 7105

4.5273 r

4. 3521 -11

4. 1845

4. 0241

3. 8707

3.7238

3. 5831

3. 2629

2. 9742

2. 7135

'r2. 4780

2. 2650 -11

2. 0721

1. 8973

1. 7388
1'

1. 5949

ion) _ L°glOO/PO

-10.0319

-10.0511

-10.0703

-10.0893

-10.1082

-10.1270

-10.1458

-10.1644

-10.1829

-10.2013

-10.2197

-10.2379

-10.2560

-10.2741

-10.2920

-10.3099

-10.3276

-10.3453

-10.3629

-10.3804

-10.3978

-10.4151

-10.4323

-10.4494

-10.4665

-10.4835

-10.5004

-10.5172

-10.5339

-10.5745

-10.6148

-10.6546

-10.6940

-10.7331

-10.7717

-10.8100

-10.8479

-10.8854
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Z

(kin)

350

355

360

365

370

375

38O

385

390

395

4OO

410

420

43O

44O

450

460

47O

480

490

500

510

520

530

540

550

560

570

580

590

600

610

620

630

640

650

660

670

680

690

700

TM L

(°K) (°K/kin)

1995.65

2012.15

2028.65

2045.15

2061.65

2078.15 3.3

2094.65

2111.15

2127.65

2144.15

2160.65

2186.65

2212.65

2238.65

2264.65

2290.65 2.6

2316.65

2342.65

2368.65

2394.65 I

2420.65 ,_

2437.65

2454.65

2471.65

2488.65

2505.65 1.7

2522.65

2539.65

2556.65

Ip
2573.65

2590.65 J

2601.65

2612.65

2623,65

2634.65

2645.65 1.1

2656.65

2667.65

2678.65

2689.65

2700.65 ,p

H
P

(km)

65.02

65.66

66.30

66.94

67.58

68.22

68.86

69.51

70.16

70.81

71.45

72.53

73.61

74.69

75.78

76.88

77.98

79.09

80.20

81.32

82.44

83.27

84.09

84.91

85.75

86.59

87.43

88.28

89.12

89.97

90.83

91.47

92.13

92,78

93.43

94.09

94.75

95.42

96.09

96,76

97.42

TABLE 19 (continued)

P

(mm Hg

(mb x i0 n) n x I0 n) n

8.3866 -8 6.

7.7688 5.

7.2018 5.

6.6810 5.

6.2024 4.

5.7620 4.

5.3567 4.

4.9832 3.

4.6389 3.

4.3212 '_ 3.

4.0278 -8 3.

3.5055 2.

3.0571 2.

2.6714 2.

2.2339 1.

2.0517 1.

1.8031 1.

1.5875 1.

1.4002 i.

1.2371 " 9.

1.0949 -8 8.

9.7O42 -9 7.

8.6110 6.

7.6500 5.

6.8041 5.

6.0585 4.

5.4007 4.

4.8197 3.

4.3058 3.

3.8508 _ 2.

3.4475 -9 2.

3.0893 2.

2.7705 2.

2.4865 I.

2.2333 i.

2.0074 i.

1.8057 1.

1.6254

1.4642

1.3200

1.1908 -9

2905 -8

8271 !

4018

0112
I

6522

3219

0178

7377 ii

4794 i

2411 1

0211 -8

6293

2930

0037

7543

5389

3525

1908

0502

2792 -9

2124 -9

2787

4588

7380

1035

5443

0509

6150

2296

8883

5859 -9

3172

0780

8650

6751

5056

3544

1.2192

1.0983 [

9.9007 -10

8,9317-10

-10.0821

-10.1154

-10.1483

-10.1809

-10.2132

-10.2400

-10.2768

-10.3082

-10.3393

-10.3701

-10.4007

-10.4610

-10.5214

-10.5790

-10.6367

-10.69_6

-10.7497

-10.8050

-10.8595

-10.9133

-10.9664

-11.0188

-11.0707

-11.1221

-11.1730

-11.2234

-11.2733

-11.3227

-11.3717

-11.4202

-11.4682

-11.5159

-11.5632

-11.6101

-11.6568

-11.7031

-11.7491

-11.7948

-11.8401

-11.8852

-11.9299

P

LoglOp/po(mk--_3 " lOn) n

1.4641 -11

1.3451

1.2368

1.1381

1.0481 "

9.6595 -12

8. 9092

8.2233

7.5957

7.0211 1

6.4945 -]2

5.5850

4. 8134

4.1573

3.5981

3.1204

2.7116

2.3609

2,0595

I
1.7998

1.5758 -12

1.3869

1.2222

1.0783 1

9.5250 -13

8.4238

7,4585

6.6115

5.8673

5.2127

4.6362 13
i

4.1369

3.6943

3.3017

2.9531

2.6433

2,3679

2.1227

1.9044

1.7097 I

1.5361 -13

LogloP/O 0

-10.9226

-10.9594

-10.9958

-11.0320

-11.0677

-11.1032

-11.1383

-11.1731

-11.2076

-11.2417

-11.2756

-11.3411

-11.4057

-11.4693

-11.5321

-11.5939

-11.6549

-11.7151

-11.7744

-11.8329

-11.8906

-11.9461

-12.0010

-12.0554

-12.1093

-12.1626

-12.2155

-12.2678

-12.3197

-12.3711

-12.4220

-12.4715

-12.5206

-12.5694

-12.6179

-12.6660

-12.7138

-12.7613

-12.8084

-12.8552

-12.9017
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TABLE 20

Skeleton of the U.S. Standard Atmosphere--1962

Defining temperature and molecular weights of the proposed U.S. Standard Atmosphere and computed
pressures and densities, where z = geometric altitude, h = geopotential altitude, T = kinetic temperature,

M = mean molecular weight, L = gradient of molecular scale temperature = dTM/dh (below 79 geopotential

kin) = dTM/dZ (above 79 geopotential kin), T M = molecular scale temperature = (T/M) M0; and M 0 = sea

level value of M.

Z

(km)

0.000

11.019

20.063

32.162

47.350

52.429

61.591

79.994

90.000

100.000

110.000

120.000

150.000

160.000

170.000

190.000

230.000

300.000

400.000

500.000

600.000

700.000

h

(km)

0.000

Ii.000

20.000

32.000

47.000

52.000

61.000

79.000

88.743

98.451

108.129

117.777

146.542

156.071

165.572

184.485

221.968

286.478

376.315

463.530

548.235

630.536

i,

1,

1,

1,

1,

2,

2,

2,

2,

T M

(°K)

288.15

216.65

216.65

228.65

270.65

270.65 -2.

252.65 -4.

180.65 0.

180.65 3.

210.65 5.

260.65 10.

360.65 20.

960.65 15.

110.65 10.

210.65 7.

350.65 5.

550.65 4.

830.65

160.65

420.65

590.65

700.65

L

(°K/km)

-6.5

0.0

1.0

2.8

0.0

28.

28.

28.

28.

28.

T

(°K)

P

(mb x I0 n) nM

966 288.15

966 216.65

966 216.65

966 228.65

966 270.65

10.1325 2*

2.2632 2

5.4747 1

8.6798 0

1.1090 0

3.3

2.6

1.7

1.1

0 28.

0 28.

0 28.

0 28,966

0 28.88

0 28.56

0 28.07

0 26.92

0 26.66

0 26.40

0 25.85

0 24.70

22.66

19.94

17.94

16.84

16.17

966 270.65

966 252.65

966 180.65

180.65

210.02

257.00

349.49

892.79

1,022.20

1,103.40

1,205.40

1,322.30

1,432.10

1,487.40

1,499.20

1,506.10

1,507.60

5.8997 - 1

1.8209 - 1

1.0376 - 2

1.6437 - 3

3.0070 - 4

7.3527 - 5

2.5209 - 5

5.0599 -6

3.6929 - 6

2.7915 - 6

1.6845 - 6

6.9572 - 7

1.8828 - 7

4.0278 - 8

1.0949 - 8

3.4475 - 9

1_1908 - 9

P

(m_3 -" 10n) n

1.2250 3

3.6392 2

8.8033 1

1.3225 1

1.4275 0

7.5939 - 1

2.5108 - 1

2.0009 - 2

3.1698 - 3

4.9731 - 4

9.8277 - 5

2.4352 - 5

1.8350 - 6

1.1584 6

8.0330 - 7

4.3450 - 7

1.5631 - 7

3.5831 - 8

6.4945 - 9

1.5758 - 9

4.6362 - 10

1.5361 -10

to the atmosphere in the high density region and

the diurnal tidal component propagates upward to
about 105 to 305 km where it is damped. The

semidiurnal components of the lunar and solar
tidal variation, because of their shorter period,

are usually detected between 50 and 80 kin. The

maximum density variation resulting from these
tidal effects is of the order of 25%. At 96 km,

Greenhow and Hall (Ref. 8) have found a diurnal

density variation of about 13% and a semidiurnal
variation of about 7%. Other causes of density

variability are solar heating which may be ex-
pected to vary with local time, latitude, season

and aititude (as selective portions of the solar

radiation are absorbed). In addition to gravita-

tional and thermal causes of fairly regular den-

sity variability there may be an irregular com-

ponent analagous to storm systems in the lower

atmosphere.

Nicolet (Ref. 9) indicates that atmospheric den-

sity variations may also be produced by solar
flares and sunspot activity. Sunspot variation ef-

fects on density would be expected to vary from
one year to the next with solar flare activity being

associated with the sunspot activity. It is presumed

that these effects would cause density variations
of the order of 30 to 40% at altitudes of 200 kin.
The effect of the ll-year sunspot cycle on density

has been estimated by Johnson (Ref. 10) as shown
in Fig. 8. The maximum decrease occurs at

about 1000 km where density is lower by a factor
of 100. The effect reverses at 1700 km. If these

estimates are correct, then the solar cycle varia-

tion may be the largest change in density.

One of the most useful techniques in determining

densities has been from changes measured in the

orbits of sateilites having fairly precisely defined
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elements. King-Hele and Walker (Ref. Ii) have

determined density from 21 satellites. Figure 9

shows the density ratio (to sea level density) from
these determinations. These data confirm that at

altitudes between 180 and 300 km "the density did

not depart from the long term average of 1957 -

1959 by a factor of more than 1.5" as a result of
latitudinal, seasonal or day-night effects, although

it is possible that larger variations might have oc-

curred over intervals of less than 1 day and not

have been detected by this technique (which re-

quires about 10 orbits for a determination).

A grouping of the data from 180 to 250 km in

Fig. 9 into those points up to January 1959 and

after August 1959 would indicate density curves,

respectively, 10% higher and 10% lower than the

average shown on Fig. 9. This small decrease
in density with time is attributed to the decrease

in solar activity.

At altitudes between 300 and 700 kin, Fig. 9

shows an increasingly pronounced day-night varia-

tion. The authors note that this is a solar zenith

angle effect and should not be attributed to latitude
or season beyond the fact that solar zenith angle
is related to latitude and season.

In evaluating the large apparent day-night ef-

fect shown, it should be noted that some of the

variation is due to solar activity as the midday

data all refer to early 1959 and the midnight values

to late 1959 and early 1960.

Jacchia (Ref. 12) has found from observations

of satellite motion that a large diurnal variation
in atmospheric density primarily due to solar heat-

ing effects occurs at altitudes greater than 325 km
and decreases at the 200-kin level. This bulge oc-

curs in the general direction of the sun with a 25 °

to 30 ° lag produced by the earth,s rotation. This

atmospheric bulge represents the bulk of the den-

sity variations at altitudes above 200 km with

variations ranging from about 5% of the mean den-

sity at 200 km to about 25% at 800 kin.

A separation of the day-night, seasonal, ter

restrial (latitude) and solar activity effects has

been indicated by Martin and Priester (Ref. 13)

using observations of Vanguard I. At 660 kin, a
factor of i0 day-to-night variation in density was

determined. This is considerably larger than
Jacchia,s value at 800 kin. The value of density

shown in Fig. i0 is a function of the difference in

right ascension A_ of the sun and satellite perigee

(and therefore a function of true local time). The

shift of maximum density at 660 km by 25 ° from

local noon is well defined and in agreement with

Jacchia.

The seasonal and latitude effects are super-

imposed and at 660 km and over latitudes and dec-

linations 0 ° to 30 ° they arc each about I/1O of

the day-night effect. The analysis of Discoverer
satellite orbits (Ref. 14) has indicated that the

latitude-seasonal effect was only about 20%.

Kallmann-Bijl (Ref. 15) in a recent survey has

indicated that the separation of yearly, latitudinal,

seasonal and solar cycle effects still remains a

problem and her belief is borne out by the lack of

agreement among different estimates of these ef-
fects.

Data from Vanguard 2 and Sputnik in addition
to Vanguard I data were further investigated (Ref.

16) and yielded the diurnal (plus seasonal) density

variations shown in Fig. 11. At 210 km the diurnal

variation of density is about a factor of 2, at 562
km it is between 5 and 6 and at 660 km it is al-

most i0 as mentioned earlier. The difference in

density between the solid and dashed lines is a
measure of the seasonal effect at each altitude

since

A6 = 6 - 6(D

is the difference in declination between the satel-

Iite perigee _ and the sun O. The seasonal den-
sity decrease at an average &_ of about 40 ° is

about 5% at each altitude. (Parkyn (Ref. 17) has

determined the ratio of polar to equatorial density

of 0.65 at about 250 km.) Figure 12 (taken from

gef. 17) is a model of the diurnal variations of

atmospheric density. The "wiggle" at 200 km

was first suggested by Kallmann (Ref. 18) and

derived more exactly and with better definition

by Priester and Martin (Ref. 19) using more data.

The wiggle occurs in the F1 region of the iono-

sphere and is considered as the beginning of the

density 'solar effect." It is caused by absorptiop

of the relatively intense solar helium line at 304A.

The diurnal variation of density at 200 km is small
because of the poor heat conduction. The increas-

ing diurnal effect "fan shape" with altitude results
from the combination of absorbed soiar electro-

magnetic radiation and increasing heat conductivity
of the atmosphere. Another density " wiggle" at

300 to 500 km expected from the absorption of the

584_ solar helium line is apparently smoothed

out by the large heat conductivity.

The flux of soiar radiations (short ultraviolet

as weII as perhaps X-rays and particles) which

cause the diurnal density variation are themselves

variables. Therefore a"solar activity effect" upon

density (above 200 kin) also occurs. The best in-

dex of this effect is the intensity of radiation (in

the 3- to 30-cm wavelength) from the sun which is

emitted from the same solar regions (coronal
condensations and flares) as the much more highly

ionizing radiations which modulate atmosphere

density.

The relation between density and 20-cm solar

radio waves has been found to be approximately

linear over the range of. values of solar flux be

10 -22 10 -22tween 100 and 240 x w/mY-cps. If 170 x

is used as a standard flux, the density variation

due to solar activity is about ±41%. This is over
and above the diurnal variation. It is known that

some of the ionizing solar radiations have their

largest variations in intensity over relatively

short intervals of minutes during solar flares.

Short transients in density that result from the

absorption of these radiations are not distinguish-

able using the relatively Iong technique of varia-
tions in satellite acceleration. On the other hand,

some of the sources of increased ionizing radia-

tion are relatively iong-lived, as a 27-day periodicity

of density has been detected. This corresponds to

the rotational period of the sun.

An estimate of density at 1518 km has been
made from the orbit of the Echo satellite (Ref. 20).
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Thevariationinorbitalperiodcorrespondedto a
meandensityof 1.1 x 10-18gm/cm3. However,
at thisaltitude,densityvariationsof 2ordersof
magnitudeare indicated,sothevalueof themean
is verylimited.

At loweraltitudes,Quiroz(Ref.21)hascon-
structedamodeloftheseasonalvariationof mean
densityasshownin Fig. 13. Thisauthornotes
thatthevariationsindicatedonthisfigurejoin
quitewellwiththefactorof 1.5at 220kmfrom
Ref. 11. At altitudesupto 30kmthereis con-
siderablymoredataavailable. In Refs.22and
23,summarieshavebeenpreparedandareavail-
ablefor a numberof specificstationsandbylati-
tudeandseason.

b. Variablemodelsfrom satelliteorbits
(Ref.245

Jacchia(Ref.12)andPriester(Ref.25)both
devisedvariablemodelsof theupperatmosphere
basedontheobservedcorrelationwiththedeci
metersolarflux andtheanglebetweenperigee
andthesun. Anannualvariationinatmospheric
densitywasthendiscoveredbyPaetzold(Ref.
265whoconstructedavariableatmosphericmodel
basedonall tIweeeffects. A CDof 2 shouldbe
usedwiththesevariableatmosphericmodels.
(Paetzoldhasrecentlyreportedthathenowuses
CD = 2.2.) In all themodels,mentionedabovethe
densityis calculatedasif all thedragwerecaused
byneutralparticles. At thehigheraltitudescharge
dragmaybeimportant,butthegrosseffectsof
theinteractionwouldbethesamein anycasefor
satelliteswithconductingskins.

Themodelatmospheresbasedonsatelliteob-
servationsareconstructedmostlyfromaccelera-
tiondatasmoothedover2-dayintervals. There-
fore, thesemodelscangivenoinformationabout
shortertermfluctuations.Little is knownabout
shorttermfluctuationsin theupperatmosphere.

Jacehia,sVariable Model. According to Jacchia,

the density of the upper atmosphere is given by

the following formula.

O = 0 (h) F (1+ 0.19 [exp (0. 01887h)

0 _.0 £

-1.9]cos ,/2 ...)

00 (h), which is the density when d# = 180 ° and

F20 = 1, is given by

log P0(h) = -15. 733 - 0.006,808,3h

+ 6.363 exp (-0.008,917h).

The quantities appearing in these formulas are

h = height in km (185_h<750)

F20 = 20-cm solar flux in units of 100 x 10-22

w/m 2 - eps

= the angle between the satellite and the

peak ot the diurnal bulge of the atmos-
phere. (The bulge is assumed to lag

behind the sun by approximately 25 ° in

Jacchia' s atmosphere. )

p = atmospheric density in slugs/ft 3

(I slug/it 3 = 515.2 kg/m 3)

Priester's Variable Model. Priester's model

is similar to Jacchia's, since both are based on

the correlation with the 20-cm solar flux and the

angle between perigee and the sun. In Priester's

model, the atmospheric density is directly pro-

portional to F20, the 20-cm solar flux, and the

peak of the diurnal bulge lags 1 hr (15 ° ) behind

the sun.

Paetzoldts Variable Model. Paetzold's at-

mosp--_ere is one of the more recent modes (July

1961). It aIso covers the greatest range oral-

titudes (150 to 1600 kin), and uses the most depend-

able and readiiy available solar flux data (the 10-

cm measurements made by Arthur Covington at
the National Research Council, Ottawa, CanadaS.

Since Paetzold' s atmosphere includes more ef-

fects, it is more complicated than Jacchia's or
Priester' s.

In Paetzold's model, the density of the upper

atmosphere, p(h) is described by

220 - F10

log 0(h) = log Ps(h) - i220(h) 120

- a(h) g(a) - 0(h5 f(05 ....

where Ps(h) is the standard density function given

in Table 21. It represents the density in slugs/

ft 3 (1 slug/it 3 = 515.2 kg/m3)at the maximum of

the diurnal bulge (local time, 0 = 14.00 hr), when

the 10-cm solar flux, F10 is 220 (in units of

10 -22 w/m2-cps), and when the annual variation

is at its peak. The function i220 (h) represents

the effect of solar ultraviolet emission, which is

correlated with the 10-cm solar flux and with

sunspots. The effect of the diurnal bulge is

represented by 0(h), where

O(h) = Os(h)

220 - F10

_A 1 0(h) .i220(h) 120 + a(h) g(a)

1220(h) + a(h)

.[220 - El0 _

-A 20(h) \ _2o ]

All three functions, 0s(h), _10(h) and &20(h) are

given in Table 21. Below 650 km, the corrections

Al0(h) and A20(h) are small. The function frO)

appears in Table 22. The annual variation in
density is represented by the product g(a) a(h), in

which g(a) is a function of the month of the year,

and a(h) is a function of the height.
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TABLE 21

The Standard Functions for the Air Density and Its Variations

1 naut mi = 1. 852 kin; 1 slug/ft 3 = 515 2 k__._g'_
• m 3 ]

h

(naut mi)

80

85

90

95

100

110

120

130

140

150

160

170

180

190

200

210

22O

23O

24O

25O

26O

270

280

290

3OO

310

32O

330

34O

35O

36O

37O

38O

39O

4OO

410

42O

43O

44O

45O

46O

470

48O

ps (h)

(Mugs/ft 3)

-12
7. 220 x 10

3. 845

2. 098

1. 347 "
-13

9. 787 x 10

7. 206

5. 135

3. 296

2. 060

1.423 l1. 060

-14
8. 046 x 10

6. 087

4. 612

3. 507

2. 712 i

2. 151

1. 714

1. 385

1.13o I
-15

9. 326 x 10

7. 901

6. 474

5. 443

4. 608

3. 921

3. 352

2. 873

2. 473

2. 196

1,938

1. 606

1, 397

1. 217

i. 063 "

9. 300 x 10 -16

8. 161

7. 174

6. 316

5. 564

4. 905

4. 333

3. 834 [

log Ps(h)

-II. 122

0. 443

0. 694

0. 879

-12. 0133

0. 1438

0. 2913

0. 4832

0. 6868

0. 8477

0. 9756

-13. 0957

0. 2167

0. 3369

0. 4553

0. 5671

0. 6705

0. 7684

0. 8604

0. 9479

-14. 0316

0. 1107

0. 1898

0. 265O

0. 3376

0. 4080

0. 4762

0. 5430

0, 6082

0. 6717

0. 7340

0. 7953

O. 8557

O. 9153

O. 9739

-15. 0316

O. 0886

O. 1448

O. 2003

O. 2555

O. 3103

O. 3642

O. 4174

0 (h)
S

-0. 009

-0. 014

-0. 018

-0. O23

-0.017

+0. 032

0. 070

0. 049

0. 054

0. 094

0. 133

0. 170

0. 207

0,242

0. 276

0. 314

0. 344

0. 375

0. 425

0,462

0. 499

0. 536

0, 573

0. 605

0. 642

0. 679

0. 716

0. 753

0. 790

0. 827

0. 863

0. 895

0. 927

0. 960

0. 992

1. 025

I. 053

1. 080

1. 108

1. 135

1. 162

1. 188

1. 213

a220(h)

0. 031

0. 036

0. 041

0. 047

0. 053

0. 066

0. 079

0. 093

0. 108

0. 122

0. 137

0. 152

0. 168

O. 185

0. 203

0. 221

0, 240

O, 259

0,278

0. 295

0, 312

0, 327

0. 342

0. 356

0. 370

0. 384

0. 397

0. 410

0. 422

0. 433

0. 444

0. 455

0. 467

0. 478

0,991

0. 498

0. 508

O, 518

0. 528

0, 537

0. 546

0. 556

0, 565

i220(h)

0. 041

0. 064

0. 091

0, 121

0. 156

0, 246

0, 325

0. 356

0. 373

0. 387

0. 398

0. 409

0,420

0,431

0. 442

0. 454

0. 465

0.476

0.487

0. 498

0. 509

0. 520

0. 531

0. 542

0. 554

0. 565

0. 576

0. 587

O. 598

O. 609

O. 620

0. 631

0. 643

0. 654

0. 665

0. 676

0,687

0. 698

0. 709

0. 720 ,

0. 732

0. 743

0. 754

A
lO(h) A2e(h)

O. 000 O. 000

0 0

0 0

0 0

0 0

9 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

O. 001 0

O. 001 0

0. 002 0

0. 002 0

0. 003 0

0. 004 0

0. 005 0

0. 007 0

0. 009 0

0. 010 0

0. 012 0

O, 014 0

O. 016 0

0. 020 0

0. 023 0

0. 028 0

0. 033 0

0. 038 0

0, O44 0

0. 049 0

0. 055 0

0.061 0

O. 068 0

0. 074 0

0.081 0

0. 087 0

0. O94 0

0, I01 0

0, 108 0

0.116 0
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TABLE 21 (continued)

(1 naut mi = 1.852 km; 1 slug/ft3 = 515.2 km-_)

h

(naut mi)

49O

50O

520

540

560

580

6OO

620

64O

660

680

700

720

740

76O

78O

8OO

825

850

Os(h)

(slugs / ft 3 )

3. 395

3. 009

2, 371

1. 875

1. 500

1. 195

9,477 x 10 -17

7. 499

6. 049

4. 854

3, 882

3. 116

2. 538

2. 059

1. 666

1. 356

'I
1. 115

8. 692 x 10 -18

6. 786

log Ps(h)

0.4701

0,5223

0.6256

0,7274

0.8278

0.9276

-16.0268

0.1254

0.2225

0.3186

0.4137

0.5075

0.5995

0.6905

0.7805

0.8691

0,9566

o17.0649

0.1721

Os(h)

1.239

1,264

1.310

1.353

1.396

1.435

1.471

1.504

1.536

1.565

1.590

1.611

1. 630

1. 647

1. 663

1. 676

1. 692

1.708

1.720

8220(h)

0,574

0.583

0.602

0.620

0.637

0.654

0.671

0.689

0,706

0.726

0.745

0.754

0. 768

0. 781

0. 793

0.804

0.815

0.829

0.843

i220(h ) A iO(h)

0.765 0.123

0,776 0.131

0,798 0.145

0.819 0.160

0.836 0.175

0.852 0.190

0.868 0.206

0.885 0.223

0.901 0.239

0.917 0.255

0.932 0.271

0.947 0.287

0.961 0.302

0.975 0.316

0.988 0.328

1.000 0,339

1.012 0.346

1.028 0.354

1.043 0.360

n 20(h)

0

0

-0, 002

-0.007

-0.016

-0,024

-0.032

-0.038

-0.038

-0.033

-0.024

-0.011

+0.006

O. 029

0. 053

0. 077

O. 096

0.114

0.126

TABLE 22

The Phase-Functions, frO) and g(a)

f(o)

0!_0 0. 870

1,0 0.945

2, O 0,98O

3. 0 0. 995

4. 0 l. 000

5. 0 0. 975

6. o o. 850

7,0 0.655

8. 0 0. 490

9. 0 0. 295

10. 0 O. 130

11.0 0.055

12.0 0. 030

13.0 0. 010

14.0 0, 000

15. 0 0. 010

16, 0 0. 045

17. 0 0. 120

18. 0 0 210

19.0 0, 300

20.0 0. 400

21.0 0. 505

22.0 0.61,5

23.0 O.740

_(a)

12.0 Mon. 0. 120

1.0 O. 320

2, 0 0. 265

3. 0 O. 180

4.0 0.170

5. 0 0. 300

6. 0 0. 640

7. 0 0. 98O

8. 0 0. 900

9. 0 0. 475

10. 0 0 485

II. 0 0. 025

1,0 , .means the

beginning of the
first month, etc.

The relative ampIitude of the annual variation

decreases toward a sunspot minirhum. The prod-

uct [ gin) a(h)] is represented by the equation

g(a) a(h) = a220(h) (g(a) + (220 - F) [0.0043

- g(a) 0.0028]) +...

The quantity g(a) appears in Table 22, while

a220(h) is given in Table 21.

Five special examples have been calculated
in Tables 23 through 27 in order to demonstrate

the effect of the different influences, The scale

height H, mean molecular weight "i_[, and temper-

ature T, are given, in addition to the density p,
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TABLE 23

Standard Model

log p (h) = log Ps (h)

This example contains the greatest values of density and temperature which will occur in an

average sunspot cycle.

h

(naut m_(1 naut mi = 1. 52 km)

p(h)

(Mugs/ft 3)

(1 slug =515.2

80 7.220

3. 845

2. 098

1. 347

9.787

7.206

5.135

3.296

2.060

1.423

1.060

6.087

3.507

2.151

1.385

9.326

6.474

4.608

2.196

1.063

5.564

3.009

1.650

9.477

5.450

3.116

1.863

1.115

6.786

x 10 -12

x 10 -13

r

x I0 -15

x 10 -16

r

x 10 -18

85

90

95

100

110

120

130

140

150

160

180

200

220

240

260

28O

3OO

35O

4OO

45O

5OO

55O

6OO

65O

7OO

75O

8OO

85O

( 1 naut

H (h)

(naut mI)

mi = i. 852 kan)

10.1

15.6

21.0

25.7

28.5

27.9

27.3

29.3

34.2

36.7

39.4

43.7

49.2

54.2

57.8

61.4

65.1

68.9

73.4

73.1

78.6

81.3

84.3

88.0

93.1

99.6

108.5

119.3

133.6

M(h)

28.0

27.8

27.7

27.5

27.3

26.9

26.4

25,9

25.3

24.8

24. 1

23.0

21.7

20.4

19.2

18.2

17.5

16.8

16.1

15.8

15.7

15.6

15.5

15.3

14.9

14.2

13.4

12.5

11.5

T (h)

589

899

1192

1455

1603

1541

1469

1544

1734

1821

1888

1987

2067

2118

2111

2110

2118

2130

2125

2116

2107

2105

2118

2112

2130

2130

2112

2118

2128
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TABLE 24

Solar Flux Effect

log p(h) = log Ps(h) - i220(h)

This example represents the mean amplitude at a sunspot minimum, while the diurnal bulge and
annual variation have their maximum values.

h

(naut mi)
(1 naut mi = 1. 852 km)

80

85

90

95

i00

II0

120

130

140

150

160

180

200

220

240

260

280

3OO

350

4O0

45O

5OO

55O

60O

650

700

750

800

850

p(h)

(slugs/ft 3}

_ slug = 515.2 kg_'_

6. 525 x 10 -12

3. 353

1. 720

1. 028 i

6. 878 x 10 -13

4. 179

2. 449

1. 459

8. 752 x 10 -14

5. 905

4. 276

2. 498

1. 372

7. 542 x 10 -15

4. 620

3. 019

1. 972

1. 297

5. 685 x 10 -16

2. 513 1
1. 135

5,847 x 10 -17

4, 185 1
1.3O3

6,764 x 10 -18

3,544

1. 963

1.11o I

6. 343 x 10 -19

H (h)

(naut mi)

(1 naut mi = I. 852 kin),

9.7

14. 1

18.9

23.3

24.5

25.0

23.8

25.8

29.0

31.5

33.4

36.4

40.2

44.4

47.6

50.4

53.2

55.9

59.6

61.9

64.0

66,8

70.6

75.8

82,5

92. O

107. 3

131. 3

169. 7

_h)

28.0

27.8

27.7

27.5

27.3

26.9

26.4

25.9

25.4

24.8

24.0

22.8

21.5

20. 1

18.9

17.9

17.1

16.4

16.0

15.8

15.6

15.3

14.9

14.4

13.4

12.2

10.8

9.1

7.3

T(h)

("_:)

569

784

1066

1344

1468

1383

1280

1357

1496

1554

1593

1634

1667

1693

1708

1704

1700

1701

1710

1710

1707

1700

1702

1709

1700

1700

1691

1698

1708
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TABLE 25

Day-Night Effect ("Diurnal Bulge")

log p(h) = log Ps(h) - 8s(h)

From this function the day-night variation can be seen. It represents the minimum of the diurnal

variation, while the other influences retain their maximum values.

h

(naut mi)

(1 naut mi = 1. 852 km)

80

85

90

95

100

110

120

130

140

150

160

180

200

22O

240

260

28O

3OO

350

4OO

45O

5OO

55O

6OO

65O

7OO

75O

8OO

85O

p(h)

(slugs/ft 3)

(1 slug = 515.2 b)7

7.

3,

2.

1.

1.

6.

4.

2.

1,

1.

7.

4.

2.

373 x 10 -12

962

186

419

o21 I
-13

788 x 10

399

945

822

163 I

908 x 10 -14

485

279

-15
9. 931 x 10

5.413

3. 174

1. 835

1. 070 _'

-16
3. 854 x 10

1. 254

-17
4. 524 x 10

1. 773

-18
7. 429 x 10

3,274 1
1. 523

-19
7. 681 x 10

4. 166

2. 318

t
1. 333

H (h)

(naut mi)

(i naut mi = 1.852 km)

9.7

14.4

18.4

21.2

23.1

23.4

22.9

24, 0

25. 1

26.3

27.6

29.6

31.9

34.5

36. 7

38.9

41.1

43.1

45.5

47.8

50.0

52,9

58, 1

68,3

83.5

101.9

131.7

179.5

277.8

_(h)

28.0

27.8

27,7

27.5

27.3

26.9

26.4

25.9

25,4

24. 7

23.9

22. 7

21.3

19.9

18.7

17.5

16,8

16,4

15.9

15.6

15.3

14.9

14.0

12.3

10.5

9.0

7.2

5.3

3.6

T(h)

t°K)

562

838

1054

1199

1298

1280

1241

1250

1260

1278

1288

1303

1314

1318

1311

1316

1316

1312

1330

1322

1310

1310

1312

1321

1332

1369

1370

1353

1327
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TABLE 26

Annual Effect

log p(h) = log Ps(h) - a(h)

This example gives the density at the annual minimum, while the remaining influences are at
their maximum

h

(naut m_

(1 naut mi = 1. 852 kin)

80

85

90

100

100

110

120

130

140

150

160

180

200

220

240

26O

280

300

35O

4OO

45O

5OO

550

600

650

7OO

75O

8OO

85O

p(h)

(slugs/ft 3)

6,702

3. 548

1.912

1.211

8. 678

6. 224

4, 328

2. 671

1,614

1,085

7. 797

4. 482

2. 397

1,270

7,523

4, 791

3. 059

1. 988

8. 818

3. 777

1. 725

8. 257

4,064

2,049

1. 045

5. 524

3. O73

1,747

1,004

x 10 -12

-13
xl0

x 10 -14

x 10 -15

x 10 -16

!

x I0 -17

in

7,

11.

15,

18.

20.

22,

22,

H (h)

(naut mi)
(1 naut mi = 1.852 km)

25.0

29,4

31,8

34.8

37.9

41,3

45,3

48,9

51.9

55,0

58.0

60.7

62.6

65.3

68,4

72.0

76.3

82.4

91.4

106.3

128,4

162.8

_flh)

28.0

27.8

27.7

27,5

27.3

26.9

26.4

25,9

25,4

24, 8

24, 0

22.8

21.5

20.1

18.9

17.9

17,1

16,4

16.0

15.8

15.6

15.4

15.0

14.5

13.8

12.6

11,2

9,5

7.6

T(h)

(°K)

469

668

850

1002

1119

1208

1212

1312

1553

1623

1663

1697

1727

1752

1759

1754

1754

1759

1755

1760

1757

1750

1748

1741

1750

1740

1740

1748

1750
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TABLE 27

Total Variation

log p(h) = log Ps(h) - i220(h) - 0(h) - a(h)

This is the lower limit which will be possible in an average sunspot cycle.

h

(naut mr)
(1 naut mi = 1. 852 kin)

80

85

9O

95

100

110

120

130

140

150

160

180

200

220

24O

260

280

300

350

4OO

450

500

550

60O

650

70O

75O

800

85O

o(h)

(slugs/ft_

(1_1ug=515.2 k-_ga)
ft 3 m

-12
6. 213 x 10

3. 146

1. 616
r

9. 738 x 10 -13

6. 365

3. 396

1. 7j48

1. 050 r

-14
6. 026 x 10

3. 618

2.318

i. 141
,r

4. 851 x 10 -15

2. 000 1

9. 621 x 10 -16

5. 048 !

2. 575

l
I. 329

4. 036 x i0 -17

1. 066
I'

3. 213 x 10 -18

1. 035 !
3. 768 x 1 -19

1. 417 !
7. 403 x 1 -20

I

2. 908

1. 698
,p

9. 625 x 10 -21

5. 405

H(h)

(naut mi}

(i naut mi = 1.852 kin)

7.5

10.3

12.9

14.8

16.5

18.5

18.8

20.5

21.6

22.0

23.3

24.5

26.6

29.4

31.5

33.0

34.0

34.7

37.3

39.1

41.7

46.3

54.5

72.8

111.0

160.4

254. 1

429. 4

659. 1

M(h)

28.0

27,8

27.7

27.5

27.3

26.9

26.4

25.9

25.4

24.7

23.8

22.4

20.9

19.3

17.8

17.1

16.6

16.2

16.0

15.8

15,3

14.4

12.7

9.8

6.6

4.5

3.96

1.85

1.24

T(h)

IeK)
429

605

739

841

928

1026

1017

1071

1099

1091

1098

1087

1088

1098

1091

1084

1080

1080

1085

1094

1107

1117

1108

1102

1118

1071

1079

1080

1115

Ps (h)

1.155

1. 219

1. 30

1.40

1.56

2.20

2.96

3.15

3. 43

4.01

4.66

6. 32

8.53

11.42

15.38

20.86

27.60

35.86

54.4

99.9

173

291

489

668

736

1071

1096

1162

1252
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4. Radiation

a. Solar flare radiations

One of the most extensive manifestations of

solar activity is the chromospheric flare. Flares

are ranked according to their area on the solar

disk and their brightness (in the red line of Hcf,

6563 A) as indicated in Table 28 (from Ref. 27).

The frequency of flares of different importance

(or class) is shown in Table 29.

TABLE 28

Flare Characteristics

Elass

l-

1

2

3

3+

Duration (rain)

Average Range

20 4 to 43

30 i0 to
90

60 20 to

155

180 50 to

430

Area

Limits

10 -6

Visible
Disk

100

100 to 250

250 to 600

600 to 1200

1200

Ha Line

Width at

Maximum

1.5

3.0

4.5

18

TABLE 29

Flare Frequency

Class

Relative

F re cluenc_T

0.72

0.25

0. 03

Absolute

Frequency

(R)

0.044

0.015

0.002

The number of flares per year varies with the

cycle of sunspots and is defined by the Wolfe sun-

spot number R, which is

R = k (lOg+f)

where f is the number of individual spots, g is the

number of spot groups and k is an instrument and
observer's correction factor. The mean sunspot

period is Ii.07 yr with mean maximum and mini-
mum Wolfe numbers of 103 and 5.2, respectively

(Ref. 28). The average time from sunspot maxi-

mum to minimum is 6.5 yr and the time from

minimum to maximum is 4.5 yr. The last sunspot
maximum occurred in 1958 with a record number

of 185. Thus, the next maximum will occur prob-

ably in 1969. However, since there is a periodicity

to sunspot cycle maximum which is not very well

defined, it may be that the next maximum will be

the end of the present period (with the 1969 peak

exceeding the 1958 peak) or the beginning of the

next period (with a sunspot number possibly as low

as 50 during 1969). During 1958 more than 3100

flares of Class i or greater occurred, while the

number of flares during the last sunspot minimum

in 1954 was only 16; none larger than Class i were

reported (Ref. 29). Solar flares may have electron

temperatures as high as 2 x 108°K (Ref. 30} as

compared to effective temperatures in the umbra

and perumbra of sunspots of 4300°K and 5500 °K,

respectively. Prior to the IGY, high energy par-
ticles from solar flares had been detected by

ground-based measurements. Four such events
were noted in the 15 yr preceding 1953. Three
more of these events have occurred since that

time, namely 23 February 1956, 4 May and II
November 1960. During the IGY and IGC-59 (July

1957 to December 1959) 25 additional solar flare

particle events were detected. These particles

were detected by balloons and satellites hut were

not energetic enough to produce secondaries de-

tectable at ground level. During this period 707

Class 2 or larger solar flares occurred (of which
71 were Class 3 or 3+). Therefore, although solar

flares of Class 2 or greater have occurred on the

average of once a day during solar maximum,

only 25 times in 2. 5 yr did these flares result in
the arrival of flare particles in the vicinity of the

earth. It should be noted here that during the last

sunspot minimum (1954) no flares of Class 2 or

larger occurred.

The flare particles are mostly protons (alphas

and some heavier nuclei have also been detected)

with kinetic energies extending from a few million
electron volts (Mev) to a few tens of billion elec-

tron volts. These energies are considerably be-

low the energies of cosmic ray particles although

the particle flux is greater than the galactic cosmic

ray flux. The first high energy solar particles
were detected at ground-based cosmic ray (sec-

ondary) monitors and one of the first names given
them was solar cosmic rays. Other names are

"solar proton event," "solar flare radiation event,"

and "solar bursts." But solar high energy particles

(SHEP) has been offered by a group of researchers
in this field as a standard nomenclature. More

confusing is the terminology "Giant" and "Large, "

sometimes used to describe the type of proton flux.
Proton fluxes from the "Giant" flares of 23 February

1956, 4 May 1960 and 11 May 1960 were not as large

as from the "Large" flares of 10 May, 10, 14 and

16 July 1959. Furthermore, the radiation doses
from the "Giant" events were not as great as from

the "Large" events. The only explanation for this
ranking is that protons from the "Giant" events

produced secondaries in the atmosphere that were

energetic enough to penetrate and be detected at

the ground. A better way to describe these events

is by their differential or integral kinetic energy
fluxes. Shown below are the differential spectra

for two solar events, 23 February 1956 as derived

from Foelschels plot (Ref. 31) and 10 May 1959 as
derived from Winckler's observations (Ref. 32).
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A reasonablysimpleyetunambigiousranking
of theseverityof theseeventscanbeseendirectly
fromtheseequationsto bethecoefficientindicating
thetotal fluxof particlesandtheexponentindicating
howthesearedistributedwithenergy. Figure14
showstheradiationdoseinsidedifferentthicknesses
of absorberfor theseeventsandclearlyshowsthat
therelativehazardfromtheseeventsvarieswith
theamountof shieldingprovided.

Figure14alsoshowsthattheradiationdoses
to anunshieldedastronautexceedthetethaldoses
butareshieldedratherefficientlybyevensmall
amountsof absorbers.Theshieldingaffordedby
thematerialsandequipmentof twospacecraftis
shownonTable30.

TABLE 30

Solar Flare Event Radiation Dose Inside Mercury

Capsule and Apollo Command Module

(Including Secondaries)

Vehicle

Mercury

Capsule

Apollo
Commandi

Module

Ambient

10 May 1959

3.8 x 103 rem

60.5 rem

5 x 106 rem

(I. 8 x 104 assum-

ing no protons be-
low 20 Mev)

23 February 1956

48.33 rem

42.5 rem

5. 4 x 102 rem

The greater shielding inherent in the Apollo

vehicle is apparent. However, it should be noted

that the orbit of Mercury is such that the Earth's

magnetic field would shield a large fraction of

these solar particles. In Ref. 32 Obayashi and

Hakura have developed a model of proton cutoff

energies versus geomagnetic latitude during a

solar plasma induced geomagnetic disturbance.
At these times, the normal cutoff energies are

reduced and the solar flare particles are "allowed"
at normally "forbidden" regions near the earth.

Using this model of cutoff energies to modify the

incident solar flare proton spectra results in de-
creasing values of dose from potar to equatorial

latitudes. Satellites which spend little or no time

at magnetic latitudes less than 50 ° will not en-

counter solar flare protons. Correspondingly,

polar orbital satellites will receive the highest
dose. Figures 15 and 16 show dose versus orbital
inclination for the two solar flare events at different

values of shielding. The dose versus latitude cutoff

for the May flare is seen to be much sharper than

for the February flare. This is, of course, due to

its relatively larger number of low energy particles

which are excluded before the higher energy particles.

Also shown in these figures are the free space

proton doses given in Fig. 14 from Ref. 33. It is

seen that even at a 90 ° orbit the satellite dose

under 1 gm/cm 2 is reduced to about 40% of the

free space dose. Actually, the doses within
orbital vehicles will be even lower due to shadow

shielding by the earth. This is a functLonofaltl-

tude as shown in Fig. 17.
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One further qualification in the use of Figs. 15

and 16 is necessary because they are plotted in

terms of magnetic inclination. Figure 18 shows

the magnetic dip equator and a great circle approxi-

mation. This latter curve may be used together
with Fig. 17 to estimate the orbital dose.

The following example is given for illustration.
We will assume an orbital inclination of 60 ° , 500-

km circular orbit extending to 60°N over 280 °

longitude. The assumed duration of the February
flare event is about 1 hr as compared to about

1 day for the May event. In 1 hr the magnetic in-
clination of the orbit has changed little, so that

the February flare dose may be read from Fig.
16 at 60 ° + 13 ° (or 73 °). This is about 35 rad

under 1 gm/cm 2. However, during the day's dura-

tion of the May event, the magnetic inclination has

gone to 47 ° and back again to 73 °. Averaging the

dose at these two latitudes gives 1200 rad under

1 gm/cm 2. At 500 km the earth intercepts 0.314

of the incident protons giving 35 (1-0. 314) or about

24 rad from the February flare and 823 rad for

the May flare as the final answers. In calculating

dosages from the May 1959 event, the flux of pro-

tons was assumed constant for 30 hr. This gives

a total flux of 3 x 109/cm2-ster above 20 Mev.

In calculating dosages from the February event,

the flux was assumed to decay immediately from

the given value as t -2. This gives a total flux of

1.8 x 108/cm2-ster above 0.60 Mev or 6. 33 x 107/

cm2-sterabove 20 Mev. During maximum periods

of solar activity, it is believed that the total yearly

flux of protons with energies greater than 20 Mev

is 109-1010/cm2-ster. Therefore, the maximum

yearly dose would be equivalent to approximately

10 10

3 x l0 T _ 3.3 times the May 1959 dose or

10
10

6.33 x 107 _" 158 times the February flare dose.

However, it is fairly certain that an event such as

that of February 1956 occurs no more frequently
than once every 4 to 5 years, so that the maximum

total yearly dose (during the peak years of the sun-

spot cycle) should be about 3.3 times the May 10,
1959 doses. This may be used to estimate the
hazard relative to mission duration.

b. Van Allen belts (geomagnetically trapped
particles)

In the vicinity of the earth, there are intense

regions of charged particles trapped in the earth's

magnetic field. In the four years since Dr. Van

Alien confirmed the existence of these regions

from measurements made on the early Explorer

satellites, a considerable body of data has been
gathered to "map" these regions.

The trapped particles form a generally toroidal

region beginning at approximately 500-km altitude.
The earth's field is not geocentric and has a number

of signficant anomaIies from a dipole resulting in

the radiation belt shape like that shown in Fig. 19

(for part of the "inner" belt). Yoshida, Ludwig
and Van Alien (Ref. 34) have shown that the loca-

tion of the trapped particles is related to the dip

latitude and scalar intensity of the real magnetic
field. In effect, the belt varies over about 800 km

in altitude and about 13 ° in latitude around the earth.



Thebelt positionshownin Fig. 19wasdeter-
minedfrom therelationshipsfoundin the last
referenceandwith theuseof asphericalhar-
monicfit to themagneticfield obtainedfrom
D. Jensenof theAir ForceSpecialWeapons
Center. Theadiabaticinvariantintegralhasalso
beennotedbya numberofworkersin this field
ashavinga betterphysicalbasisfor determining
thestructureof thebelts.

MostrecentlyMcllwain(Ref.35)hasshown
thatthemagneticintensityscalarB andtheparam-
eterL definea practicalandaccuratecoordinate
systemfor thetrappedparticles. Theparameter
L is relatedto theadiabaticinvariantintegraland
wouldbetheequatorialradiusof a magneticshell
in a dipolefield. In therealfield thephysical
interpretationof L is morecomplex.

Theenergyspectrumandparticlefluxfor in-
nerbelt protonswerecalculatedusingtheexperi-
mentaldataof FredenandWhite(Ref. 36),Van
Allen(Ref.37),andVanAllen, McIlwainand
Ludwig(Ref. 38). Figure20showstheproton
flux contoursat onelocationovertheearth, and
Fig. 21thedifferentialkineticenergyspectrum
of protons. ThepeakfluxshownagreeswithVan
Alien'srecentestimates.

Themodelof electrons,byfar themostabun-
dantconstituentsofthetrappedradiationbelts,
wasdeterminedusingfluxandspectralmeasure-
mentsofHolley(Ref.39),andWalt,Chase,Cladis,
ImhofandKneeht(Ref.40),togetherwiththe
Anion302geigercounterdatafroma nurnberof
satellitesandspaceprobes(Refs.41and42).
Figure22showstheelectronflux contoursat one
locationovertheearthandFig. 23showsthedif-
ferentialkineticenergyspectrum.

Thisspectrumagreeswell in shapewiththe
recentdeterminationbyPizzella,Laughlinand
O'Brien(Ref.43) for the inner radiation belt at an

altitude of 1000 km. The highest flux at this alti-

tude is 5 x 106 electrons/cm2-see-steradian as

given by Frank, Dennisonand Van Alien (Ref. 44).
This agrees well with the flux at this altitude

shown in Figs. 22 and 23.

For the outer radiation belt, Van Allen has

given the following peak electron distribution

108 cm -2 sec -I above 40 Key

105 cm °2 sec -I above 2 Mev

102 cm -2 sec -I above 5 Mev

This is two orders of magnitude less in flux than
_,an Alien's earlier estimates of the outer zone

electrons. Extending the new spectrum to 20Key

gives 2 x 109 electrons/cm2-sec or 1. 6 x 108

2
electron/era -sec-steradian, which agrees closely

with the peak outer belt flux shown in Fig. 22.

Figures 24 and 25 show the electron and
bremsstrahlung dose rates versus aluminum

absorber from electrons at the peak of the inner

and outer regions (Ref. 45). These may be com-

pared with the Van Allen belt proton doses also
shown i,n Fig. 14 as a function of absorber thick-

ness for protons at the center of the inner belt.

Proton doses for orbiting satellites may be ob-
tained from Tables 31 and 32 as a function of

orbital altitude, inclination and aluminum absorber

thickness. Due to the belt asymmetl%_, the dose

on each successive orbit differs. For example,

at an orbital inclination of 40 ° (geographic) and an

altitude of 740 km under 6 gm/cm 2 of aluminum,

the accumulated dose is 0,0214 rein after the

first orbit and 0. 0249 rem after two orbits. For

integer orbits, the dose accumulation cycle should
repeat itself every 24 hr. The doses in Tables 31

and 32 are 12-hr totals, so that the orbital lifetime

dose may be closely approximated by 2 (number

of days in orbit) (12-hr cumulative close). Table

33 from Ref. 45 gives dose versus orbital incli-

nation, altitude and absorber thickness for a

satellite exposed to the eiectrons of the inner
Van Alien belt.

c. Primary cosmic radiation

Steady-state cosmic radiation values (Ref. 46)

that have been generally accepted for a number of

years (Ref. 47) were based on the belief that the

primary spectrum eontained few particles in the

energy region below a fraction of a Bev. This

meant the ionization at geomagnetie latitudes
greater than 60 ° was taken to be the same as that

at 60 ° and this indeed appeared to be true during
1950 to 1952. However, in 1954, a time of mini-

mum solar activity, low energy protons caused
an increase in the ionization levels at latitudes

above 60 ° (Ref. 48). It shouid be remembered,

though, that the most favorable periods for ex-

tended space flight are these same times of low

solar (but higher cosmic ray) activity, because
of the great reduction in flare occurrences. For

this reason, values of the ionization rate that in-

elude the effect of the increase above 60 ° as

would be expected during a typical time of solar

quiescence are plotted in Fig. 26 as funetions of
altitude and geomagnetic latitude, both for near-

earth and high altitude positions of measurement

(Ref. 49). Not shown at the scaie of Fig. 26 is

that as the surface of the earth is approached,

there is an ionization increase, followed by a

decrease. The increase begins at 130,000 ft,
continues down to heights of 80,000 ft (at 90 °

latitude) or 50,000 ft (at 0 ° latitude), and has its
source in the shower, or cascade formation of

mesons, nucleons, electrons and high energy
photons, all of which are created by interaction

of high energy eosmie particles with atmospheric
constituents. The decrease in ionization with de-

creasing altitude below 80, 000 to 50, 000 ft comes

about through atmospheric radiation absorption,

while the decrease with decreasing magnetic lati-

tude results from the increased shielding offered

by the earth.s magnetic field against the lowered

energy eosmie particles. Figure 26 shows that the
increase in cosmic detector ionization at increas-

ingly great distances from the earth arises from

a combination of the decrease in the solid angle

subtended by the earth and the decrease in geomag-
netic field strength, with a corresponding decrease
in the cosmic particle deflection.

An estimate of the biologicaI whole-body radia-

tion intensity as a function of altitude and geomag-

netic latitude can be obtained from Fig. 26 oniy
if the conversion can be made from the ionization

itself, in units of roentgen, to rem, the unit which

gives an idea of the biological effectiveness of the
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TABLE 31

Inner Van Alien Belt Proton Radiation Dose (reins)

Orbiting Aluminum Sphere

Orbital

Inclination Orbital

(deg) Altitude

0 _, 555 km

! 300 n m_

740 km

400 n rni

1110 km

600 n mi

1852 km

1000 n mi

20 555 km
300 n m_.

740 km

400 n mi

.to

Aluminum Shield

Thickness (gm/cm 2)

No. Orbits

Reins

1.0 2.0 6.0 10.0 20.0 60.0 100.0

+0.00372 +0.00272 +0.00145 +0.00104 +0.00062 +0.00024 +0.00014

+0.01852 +0.01354 +0.00720 +0.00517 +0.00312 +0.00120 +0.00070

+0.02203 +0.01611 +0.00857 +0.00615 +0.00371 +0.00143 +0.00083

+0.02744 +0.02006 +0.01067 +0.00766 +0.00462 +0.00178 +0.00103

+0.03642 +0.02664 +0.01417 +0.01017 +0.00613 +0.00237 +0.00137

+0.06091 +0.04455 +0.02370 +0.01701 +0.01026 +0.00396 +0.00230

+0.07287 +0.05329 +0.02835 +0.02035 +0.01228 +0.00474 +0.00275

+0.02093 +0.01530 +0.00814 +0.00584 +0.00352 +0.00136 +0.00079

+0.08120 +0.05938 +0.03159 +0.02268 +0.01368 +0.00528 +0.00307

+0.09957 +0.07282 +0.03874 +0.02781 +0.01678 +0.00647 +0.00376

+0.15308 +0.11195 +0.05956 +0.04276 +0.02579 +0.00996 +0.00579

+0.19437 +0.14215 +0.07563 +0.05429 +0.03275 +0.01264 +0.00735
+0.24586 +0.17981 +0.09566 +0.06868 +0.04143 +0.01599 +0.00930

+0.27285 +0.19955 +0.10616 +0.07622 +0.04598 +0.01775 +0.01032

+0.63995 +0.46803 +0.24900 +0.17876 +0.10784 +0.04163 +0.02420

+1.13415 +0.82947 +0.44130 +0.31682 +0.19113 +0.07379 +0.04290

+1.62798 +1.19063 +0.63345 +0.45477 +0.27435 +0.10592 +0.06158

+2.40827 +1.76130 +0.93707 +0.67274 +0.40584 +0.15669 +0.09110

+3.02077 +2.20925 +1.17540 +0.84385 +0.50906 +0.19655 +0.11427

+4.13293 +3.02264 +1.60814 +1.15453 +0.69649 +0.26891 +0.15634

+8.14456 +5.95656 +3.16909 +2.27517 +1.37253 +0.52993 +0.30810

+16.08871 +11.76655 +6.26020 +4.49436 +2.71130 +1.04682 +0.60862

+24.51561 +17.92961 +9.53915 +6.84841 +4.13142 +1.59513 +0.92741

+33.35166 +24.39190 +12.97731 +9.31674 +5.62049 +2.17006 +1.26167

+41.75440 +30.53728 +16.24686 +11.66404 +7.03653 +2.71679 +1.57954

+0.07177 +0.05249 +0,02792 +0.02005 +0.01209 +0.00467 +0.00271

+0.07767 +0.05680 +0,03022 +0.02169 +0.01309 +0.00505 +0.00293

+0.07838 +0.05782 +0.03050 +0.92189 +0.01321 +0.00510 +0.00206

+0.07838 +0.05732 +0.03050 +0,02189 +0.01321 +0.00510 +0.00296

+0.07890 +0,05770 +0.03070 +0,02204 +0.01329 +0.00513 +0.00298

+0,08052 +0.05889 +0.03133 +0.02249 +0.01356 +0,00523 +0,00304

+0,08355 +0.06110 +0.03251 +0.02334 +0.01408 +0.00543 +0.00316

+0.05174 +0.03784 +0.02013 +0.01445 +0.00871 +0.00336 +0.00195

+0.07776 +0.05687 +0.03025 +0.02172 +0.01310 +0.00505 +0.00294

+0.08903 +0.06511 +0.03464 +0,02487 +0.01500 +0.00579 +0.00336

+0.08907 +0.06514 +0.03465 +0.02488 +0.01501 +0.00579 +0.00336

+0.09400 +0.06875 +0.03657 +0.02626 +0.01584 +0.00611 +0.00355

+0.12011 +0.08784 +0.04673 +0.03355 +0.02024 +0.00781 +0.00454

+0.14274 +0.10439 +0.05554 +0,03987 +0,02405 +0.00928 +0.00589

+0.60986 +0.44604 +0.23730 +0.17037 +0.10277 +0.03968 +0.02307

+1.11637 +0.81792 +0.43516 +0.31241 +0.18847 +0.07276 +0.04230

+1.36262 +0.99656 +0.53020 +0.38064 +0.22963 +0.08866 +0,05154
+1.62606 +1.18922 +0.63270 +0.45423 +0.27402 +0.10580 +0.06151

+1.86481 +1.36384 +0.72560 +0.52093 +0.31426 +0.12133 +0.07054
+2.46111 +1.79994 +0.95763 +0.68750 +0.41475 +0.16013 +0.09310

+7.25229 +5,30399 +2.82190 +2.02591 *1.22217 +0,47187 +0,27434

_14.12855 +10.33298 +5.49749 +3.94679 +2.38097 +0.91928 +0.53447

e19.89605 +14.55107 +7.74166 +5.55794 +8.35292 +1.29455 +0.75265

÷25.14740 +18.39168 +9.78499 +7.02490 +4.23789 +1.63624 +0.95131

_30.67196 +22.43209 +11.93462 +8.56817 +5.16890 +1.99570 +1.16030

+0.03171

+0.03866

+0.03866
+0.03866

+0.03866

+0.03866

+0,03866

+0.05504

+0.06403

+0.06958

+0.07104

+0.07155
+0.07749

+0.08057

+0.43148
+0.81762

+0.93977

+1.02163

+1.14910

+1.52201

+4.77857
+8.78610

_11.22799

k13. 73962

,17. 46029

I

+0.02319 +0.01234 +0.00886 +0.00534 +0.00206 +0.00119

+0,02828 +0.01504 +0.01080 +0.00651 +0.00251 ¢0.00146
+0.02828 *0.01504 +0.01080 +0.00651 +0.0025I +0.00146

+0.02828 +0.01504 +0.01080 +0.00651 +0.00251 +0.00146

+0.02828 +0.01504 +0.01080 +0.00651 +0.00251 +0,00146

+0.02828 +0.01504 +0.01080 +0.00651 +0.00251 +0.00146

+0.02828 +0.01504 +0.01080 +0,00651 +0.00251 +0.00146

+0.04025 +0.02141 +0,01537 +0,00927 +0,00358 +0.00208

+0.04683 +0.02491 +0.01788 +0.01079 +0,00416 +0.00242

+0.05088 +0.02707 +0.01943 +0.01172 +0.00452 +0.00263

+0.05195 +0.02764 +0.01984 +0.01197 +0.00462 +0.00268
+0.05233 +0.02784 +0.01998 +0.01205 +0.00465 +0.00270

+0.05667 +0.03015 +0.02164 +0.01305 +0.00504 +0.00293

+0.05892 +0.03135 +0.02250 +0.01357 +0.00524 +0.00304

+0.31556 +0.16789 +0.12053 +0.07271 +0.02807 +0.01632
+0.59797 +0.31914 +{).22840 +0.13778 +0.05319 +0.03093

+0.68731 +0,36567 +0.26252 +0.15837 +0,06114 +0.03555

+0.74717 +0.39752 +0.28539 +0.17216 +0.06647 +0.03864

+0.34040 +0.44712 +0,32100 +0,19364 +0.07476 +0.04346
+1.11313 +0.59222 +0.42517 +0.25649 +0.09903 +0.05757

+3.49483 +1.85936 +1.33488 +0.80529 +0.31092 +0.18077

+6.42576 +3.41872 +2.45436 +1.48065 +0.57167 +0.33237

+8.21165 +4.36887 +3.13652 +1.69216 +0.73056 +0.42474

+10.04854 +5.34616 +3.83814 +2.31543 +0.89398 +0.51976

+12.76966 +6.79389 +4.87751 +2.94244 +1.13607 +0.66051
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TABLE 33

Twelve-Hour Orbital Dose (rad) Within Van Allen Belt

Altitude

555 km

(200 naut mi)

740 km

(400 naut mi)

1110 km

(600 naut mi)

1852 km

(1000 naut mi)

Orbital

Inclination

(deg)

0

4O

9O

0

4O

9O

0

40

9O

0

40

90

Aluminum Sphere Thickness (gm/cm 2)

0.1 1.0 2.0

Electrons

4. 598 x l03

1. 444 x 103

6. 811 x 102

I. 1690 x 104

5. 046 x 103

3. 693 x 103

6. 634 x 104

4. 129 x 104

2. 359 x 104

2. 625 x 105

2. 088 x 105

1. 097 x 105

X-rays

0. 7569

0. 2377

0. 1121

I. 924 l

0. 8306

0. 6078

10. 9197

6. 7964

3. 8825

Electrons

I. 137 x 10 -3

3. 574 x 10 -4

1.686 x 10 -4

2. 892 x 10 -3

I. 248 x 10 -3

9. 136 x 10 -4

I. 641 x 10 -2

1. 021 x 10 -2

5. 835 x 10 -3

X-rays

0. 2301

0. 0723

0. 0341

0. 5849

0. 2525

0. 1848

3,3196

2. 0661

1. 1803

Electrons

<10 -5

<10 -5

< 10 -4

X-rays

O. 1575

O. 0494

O. 0233

O. 4003

O. 1728

43.2147

34.3755

18.0597

6. 495 x 10 -2

5. 166 x 10 -2

2. 714 x 10 -2

13.1373

10.4502

5.4901

1. 803 x 10 -4

1. 434 x 10 -4

7. 534 x 10 -5

0. 1264

2. 2716

1. 4138

0. 8077

8. 9898

7. 1510

3. 7569

ionization. The factor of conversion, Relative

Biological Effectiveness (RBE), yields a measure

of the degree of localization, or nonuniformity,

of tissue ionization. Ionization localization along

the path of penetration is singularly noticeable

for heavy (atomic number 6 or greater) particles.

Although all atomic species through iron have

regularly been observed, the biologically note-

worthy heavy constituents of the primary radiation

are carbon, nitrogen, oxygen, the magnesium

and calcium groups, and iron. When these medium

and high energy particles enter tissue, they first

produce an ionization trail of great density. The

high energy particles, in general, undergo nuclear

disintegration during the penetration process,

with a resulting large reduction in specific ioni-

zation, since afterward the ionization is caused

by several particles of reduced charge travelling

in different directions. These primaries which

have a reduced impinging energy have a signif-

icant probability of being completely stopped

through ionization only. This leads to extremely

large specific ionizations near the ends of the

paths, stnce the rates of energy loss increase

as the particle energies decrease, down to very

low energies. These thindown hits are capable

of causing cell destruction. Their effects in

nonreparable regions of the body, such as certain

brain areas, have not yet been demonstrated.

The RBE conversion from roentgen to rem ob-

tained from a weighted analysis of particle type
and tissue ionization characteristics between 30 °

and 55 ° latitude at the top of the atmosphere and

extrapolation elsewhere, increases with increasing

altitude and geomagnetic latitude, as seen in

Fig. 27. This is explained by noting that at a

position requiring decreased particle penetration

of the magnetic field, there is a slight increase

in the relative number of heavy constituents,

compared with hydrogen and helium. At the

same time, the heavy component energy range

extends to lower values. It must be emphasized,

however, that little actual biological experi-

mentation has been performed to test the validity

of the relation between ionization track density

and the RBE for particles of large atomic

number, which produce the greater fraction of

the unshielded biological intensity.

Shielding against cosmic radiation is not

ordinarily advisable, since it requires thick-

nesses of aluminum greater than 25 gm/cm 2

for heavy particles, and at least 200 gin/era 2

(400 lb/ft 2 of shielded area) for hydrogen and

helium, which have far higher penetrating power
and constitute about 15 percent of the unshielded

biological dose and 99 percent of the incident

particle number. In fact, the biological dose
increases for shielding thicknesses up to 15

gm/cm 2 for the carbon, nitrogen, and oxygen

group, up to 10 gm/cm 2 for magnesium, up to

6 gm/cm 2 for calcium, and up to 5 gin/era 2 for
iron.

An estimate of the effectiveness of shielding

against cosmic radiation is shown in Fig. 28
taken from Wallner and Kaufman (Ref. 50). A

comparison with the curves shown in Fig. 14

shows the relatively slow decrease of dose with

absorber thickness for cosmic rays as compared

to other space radiations. The dose peak at

about 10 gm/cm 2 is due to the increase of ionization
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ratebeforesignificantnumbersof particlesare
stoppedin theabsorbingmaterial.

d. Penetratingelectromagneticradiation

Previousestimatesofthehighenergyendof
thesolarsystemindicatedintensitiesoftheorder
of l0-4 erg/cm2-secbelow8A. Recentmeasure-
mentsindicatedthatduringasolarflare (class
2+)this intensityincreasedto about10-2 erg/

2cm -secwith2A asthelowerlimit oftheradi-
ationdetected(Ref.51). Morerecently,meas-
urementshaveindicatedthatX-rayflashesduring
solarflareshadenergiesashighas80key(0.15

(Ref. 52).

During a class 2 solar flare on 20 March 1958

an intense burst of electromagnetic energy was
recorded which lasted 18 seconds for less) (Ref.

53). This was determined to have an intensity

of 2 x 10 -4 erg/cm2-sec above 20 kev and

peaking in the region of 200 to 500 key (0.06 to
o

0.025 A). Measurements during a class 2+ flare

on 31 August 1959 indicated a peak intensity of

4.5 x 10 -6 erg/cm2-sec (4 20 kev) arriving at the

top of the earth,s atmosphere (Ref. 54). The

spectrum decreases in photon count by a factor
of I0 for an energy increase of about 20 kev.

Although these photons are quite penetrating (the
half-thickness value of aluminum for 500 kev

photon is 3.0 cm) their intensity is so low as to
produce an insignificant dose (of the order of

10 -5 roentgen from the March 1958 event), oIn-

tensity enhancements in the region of 8-20 A were

also observed during the August 1959 event. In

this region about 1 erg/cm2-sec was measured.

This would result in a much greater dose than

the less intense higher energy photons; their

penetration is very much less. The half-thickness

-i
values are less than l0 cm of aluminum.

A solar X-ray spectrum from a class 2+ flare

is shown in Fig. 29 taken from Ref. 30. X-rays
with energies in excess of 20 key appear to be

emitted only for short periods (a few minutes)

during large flares. The X-ray dose rate to an

unprotected man from a flux as shown in Fig. 29
would be about 3 rem/hr. However, since the

emission lasts for much less than 1 hr we may

conclude that high energy solar electromagnetic

radiation will not be of concern to space flight.
Saylor, et al. (Ref. 55) point out that ultraviolet

light on bare skin can cause severe burns and

even skin cancer. It will therefore be advisable

to use windows or shutter arrangements to filter

the otherwise unattenuated solar ultraviolet rays.

In space there will be no warning glare of scattered

light to alert the observer that his line of sight is

approaching the sun. An inadvertent glance at the

sun could cause temporary vision failure and ten

seconds of exposure would cause permanent
retinal burn. These authors conclude that pro-

tection of the eyes against sunlight is a necessity.

e. Radiation damage thresholds

Of all the components of a space vehicle,

man has the lowest threshold to damage by
ionizing radiation as shown in Table 34.

TABLE 34

Radiation Damage Dose Limitations

People

Semiconductor

Electronics

Elastomers

Plastics

Metals

Ceramics

Roentgen Equivalent

103 (lethal)

107 (failure)

1010

102 (sickness)

106 (damage)

108

107

108

1015

1017

108

109

Ref. Nucleonics Sept 1956

More detailed treatment of radiation damage
mechanism are shown in Refs. 56 and 57 and

in the very comprehensive Radiation Effects

Information Center Series of Battelle Memorial
Institute.

Semiconductors are seen to be the second

easiest damaged component. This is caused

by the fact that their properties arise from their

form of very nearly perfect single crystals.
Most metals and ceramics used for structural,

electrical or magnetic applications are already
in a disordered polycrystalline form and their

properties are only moderately changed by
further disorder (ionization).

It should be noted that certain types of sensing

elements may give erroneous readings due to

spurious signals from the Van Alien or other
radiation environments. While this does not

represent damage by radiation, it is neverthe-

less undesirable and can be easily avoided by

proper selection, design and calibration of these
devices.

As contrasted to actually "reading" unwanted

signals from ionizing radiations in sensitive
"front end" components it is known that electronic

components and circuits may operate improperly
while in the presence of large fluxes of ionizing
radiation. Measurements made under conditions

simulating a nuclear explosion in space have indi-

cated that the threshold of susceptibility to these

effects is at peak dose rates of 106 to 107

roentgen per second. This again is greatly in
excess of what will be encountered from the

natural radiation environments.

The radiation problem therefore reduces to

protection of the crew.
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Maximumallowableradiationdosesfor
mannedspaceflighthavebeenrevisedupward
from 25remconsiderablyin thepastyear.
PresentlytheApollomaximumallowableemer-
gencydosagesareasshownin Column4 of

Table35from Ref.58. Thenormalmission
dosagesareasshownin Column3. These
valuesaremoremeaningfulthanthesingleso-
called"wholebody"valueusedpreviously.

Skinbodydose
0.07mmdepth

Skinbodydose
extremities,
hands,etc.

Bloodforming
organism

Eyes

5YearDose
(rem)
1630

3910

271

271

RBE

TABLE 35

Radiation Dosage

Average Year Maximum Single Acute
Exposure (rad)

5OO

700

2O0

100

Dose (rad)

1.3 235

1.4 559

1.0 54

2.0 27

Design Dose

(rad)

125

175

5O

25

4. Meteoroids

Empirical data on meteoroids has come

either from optical and radar meteor obser-
vations or from impact detectors on board

rockets and satellites. In the first type of ob-

servation, velocity and luminous intensity history

are directly measurable. The mass and density
of the meteoroid is then determined using the

drag equation, the shape of the light curve and
the vaporization equation. Due to the variety

of assumptions and dependencies in this analysis,

there is a large uncertainty in flux estimates

from the same type of data. The relation between

meteoroid mass and visual magnitude is shown

in Fig. 30 from an early survey (Ref. 59). The
relation between mass and flux is shown in

Fig. 31 from a later survey article (Ref. 60).
The flux uncertainty is dealt with in a number of

other survey, articles (Refs. 61, 62 and 63), and
an examination of the assumptions employed in

the analysis procedure will show why it is as

large as 103 . The best known model of the

meteoroid environment was developed by

Whipple in 1957 and summarized in Table 36.
The following equation fits the distribution

presented by Whipple in 1957.

-12 -I
@ = 1.3x10 m

where ¢ is the flux/m2-sec of particles with mass

m grams and greater. This was revised by

Whipple (Ref. 64) in 1960 to

= i0-12.6 m-l. 186 to include empirical

data from rockets and satellites. A recent evalu-

ation of rocket and satellite data (Ref. 65) (obtained

from acoustic detectors) obtained

= i0- 17.0 m- I. 70 applicable between

masses of 10 -10 to 10 -6 gm. These distributions

are shown in Fig. 32 taken from the last cited

reference. It should be noted that meteoroid

masses of greatest interest to space vehicle de-

signers lie between the mass regions measured

by the meteor or satellite-borne microphone

techniques. Observations of meteors simulated

by shaped charge firings from an Aerobee Rocket
(Ref. 66) have indicated that Whipple may have

underestimated meteor luminous efficieneies.

This may be accounted for by a downward revision

by an order of magnitude in mass (Ref. 67) of the
1957 flux estimate of Whipple so that

= 1.3 x 10 -13 m -1

Various investigators have put forth penetration

models--some based on empirical equations derived
from test data and some based on theoretical con-

siderations and most all giving the penetration in a

thick target. Since structural skins are usually

made of aluminum alloy materials, a good basis

of comparison is the penetration of meteorites into

aluminum. Four penetration equations were in-

vestigated to obtain a comparison of the meteorite

penetrations given by the different equations. These

equations were:

a. Whipple' s equation

This equation is given in (Ref. 63) as

1 1/3 1/3
P = K 1 (--_-) E

where

P = penetration in a thick target

K 1 = constant of proportionality

E = meteorite energy

p =" target density

c = heat to fusion of target material

For a meteorite of diameter (d) moving at a

velocity (V) cm/sec and with a meteoroid density

05 gm/cm 3 and c = 248 cal/gm Whipple's
PM

0.

equation is
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TABLE 36

Data Concerning Meteoroids and Their Penetrating Probabilities

F. L. Whipple, Ref. 5

Meteor

Visual

Magnitude

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Mass

(g)

25.0

9.95

3.96

1.58

0. 628

0. 250

Radius

(u)

Assumed

Vel

(kin/see)

KE

(ergs)

Pen.

in A1 t

(era)

49,200

36,200

26,600

19,600

14,400

10,600

28

28

28

28

28

28

1.0 x 1014

3.98 x 1013

1.58 x 1013

6.31 x 1012

2.51 x 1012

1.00 x 10 I2

21.3

' 15.7

11.5

8.48

6.24

4.59

9.95 x 10 -2 7,800

3.96 x 10 -2 5°740

1.58 x 10 -2 4,220

8.28 x 10 -3 3,110

2.50 x 10 -3 2,290

9.95 x 10 -4 1,680

3.96 x 10 -4 1,240

1.58 x 10 -4 910

6.28 x 10 -5 669

2.50 x 10 -5 492

9.95 x 10 -6 362

3.96 x 10 -6 266

1.58 x 10 -6 I 196

6.28 x 10 -7 144

2.50 x 10 -7 106

9.95 x 10 -8 78.0

3.96 x 10 -8 57.4

1.58 x 10 -8 39.8*

6.28 x 10 -9 25.1"

2.50 x 10 -9 15.8"

9.95 x 10 -10 10.0"

-10
3.96 x 10 8.30*

-10
1.58 x 10 3.98*

-11
6.28 x 10 2.51"

-11
2.50 x 10 1.58"

-12
9.95 x 10 1.00

28

28

27

26

25

24

23

22

21

20

19

18

17

16

15

15

15

15

15

15

15

15

15

15

15

15

3.98 x 1011

1.58 x 1011

5.87 x 1010

2.17 x 1010

7.97 x 109

2.93 x 109

1.07 x 109

3.89 x 108

1.41 x 108

5.10 x 107

1.83 x 107

6.55 x 106

2.33 x 106

8.20 x 105

2.87 x 105

1.14 x 105

4.55 x 104

1.81 x 104

7.21 x 103

2.87 x 103

1.14 x 103

4.55 x 102

1.81 x 102

7.21 x 10

2.87 x 10

1.14 x 10

3.38

2.48

' 1.79

1.28

0.917

0. 656

0.469

0. 335

0.238

0.170

0.121

0.0859

0.0608

0.0430

0.0303

0.0223

0.0164

0.0121

0.00884

0.00653

0.00480

0.00353

0.00260

0.00191

0.00141

0.00103

No. Strik-

ing Earth

(per day)**

2 x 108

5.84 x 108

1.47 x 109

3.69 x 109

9.26 x 109

2.33 x 1010

5.84 x 1010

1.47 x 1011

3.69 x 1011

9.26 x 1011

2.33 x 1012

5.84 x 1012

1.47 x 1013

3.69 x 1013

9.26 x 1013

2.33 x 1014

5.84 x 1014

1.47 x 1015

3.69 x 1015

9.26 x 1015

2.33 x 1018

5.84 x 1016

1.47 x 1017

3.69 x 1017

9.26 x 1017

2.33 x 1018

5.84 x 1018

No. Striking

3m (Radius)

Sphere

(per day)***

2.22 x 10 -5

i 6.48 x 10 -a

1.63 x 10 -4

4.09 x 10 .4

i i. 03 x 10 -3

J

2.58 x 10 -3

6.48 x 10 -3

1.63 x 10 -2

4.09 x 10 -2

1.03 x 10 -I

2.58 x I0 -I

6.48 x 10 -I

1.63

4.09

1.03 x i0

2.58 x I0

6.48 x 10

1.63 x 102

4.09 x 102

! 1.03 x 103

2.58 x 103

6.48 x 103

1.63 x 104

4.09 x 104

1.03 x 105

2.58 x 105

6.48 x 105

* Maximum radius permitted by solar light pressure.

** These No. based on entrance to atmosphere at 100 km approx

*** Includes earthTs shading effect of 1/2

=/' 9E_1/3
{ P kw---_-] ; ( = 447 x 778.3 ft lb/lb for AI
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where

P __
_[ 1.08x 10-4 V 2/3

P = penetration in thick target

d = meteorite diameter

V = meteorite velocity in cm/sec.

Whipple, s equation is theoretical and is

believed to give penetration depths for hyper-

velocity impacts that are too high.

b. Kornhauser' s equation

This equation is given in (Ref. 68) as

0.09

h =
0

where

h = penetration (depth of crater)

K 2 = constant of proportionality

T = kinetic energy of projectile

E = modulus of elasticity of target
material

E 0 = reference modulus

This equation yields

h
= 0.282 x 10 -4 V 2/3

which is identical to Whipple' s except that the
value of the constant is lower.

c. Summer, s equation

This equation is an empirical equation based

on experimental test data using many different

projectile and target material combinations. As

given in Ref. 69. the equation has the form of:

p pp 2/3 2 I3

:

where

P = penetration in a thick target

d = diameter of projectile

pp = density of projectile

Pt = density of target

V = projectile velocity

C = speed of sound in target material

For Whipple' s meteorite density of pp = 0.05

gm/cm 3, an aluminum target density of Pt =

2.8 gm/em 3 and C = 5. 1 x 105 cm/sec0 the

equation reduces to

P =
d- 0.243 x 10 -4 V 2/3

The agreement between this constant and that of
Kornhauser is noted.

d. Bjork' s equation

This is a theoretical equation developed by

Bjork (Ref, 70) using a hydrodynamic model to

explain hypervelocity impact. He derived equations

for the impact of aluminum projectiles on alumi-

num targets and also iron projectiles on iron

targets. In Ref. 71, Bjork gives the penetration

of an aluminum projectile into an aluminum target

as:

P = 1.09 (m v) 1/3

where

P = penetration in em

m = projectile mass in gm

v = impact velocity in kralsec

Bjork in Ref. 72 states that the use of a correction

factor of the form(_---P_ ¢ is subject to a great
\Pt /

deal of conjecture as it rests on no theoretical
basis. He also stated that he would favor the

value of _ = 1/3 and 0 = 1/3 in a general pene-

tration equation such as:

P = K3 ml[3 Pt@PP(* - 1/3)(_-) o

equating the general and empirical relations.

1.00 (my) I13 :K3 roll3 Ot -113 (_) I/3

1.o9 o,-li 

For aluminum targets, Pt = 2.8 gm/em 3 and

C = 5.1 km/sec, K 3 = 2.63.

Thus we may write

p = 2.63ml/3 pt-1/3 (V)1/3

Then, letting "d" equal the meteorite diameter

in cm and its density pp = 0.05 gm/cm 3 yields

_r d 3 1/3 pt-i/3 (_) i/3P = 2.63 (_- pp)

P V 1/3
d- = 0. 322

where

P = penetration = cm

d = meteorite dia= cm

km
V = meteorite velocity sec
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This probably stretches Bjork' s work more

than he would care to see done but it is necessary

to obtain a comparison with the other formulas.

e. Engineering model

For purposes of evaluating meteoroid effects

upon propellant storage vessel design, the follow-

ing model has been recommended (Ref. 735.

(I) The integral mass flux of particles

is given by

= I0 -13 m -10/9 hits /m2 /see, by

particles of mass m gm and

greater. Approximately 90% of
the meteoroid flux is assumed to

have a density of 0.05 gm/cm 3.

The effective flux used in com-

puting probability of hits is there-

fore reduced by an order of magni-

tude to compensate for the very

low density meteoroids which will

not follow the given penetration
law.

(2) The particle velocity (v) is 30 km/sec.

(3) Penetration of impacting particles into

a single thickness of steel is given by

P = I. 5 (my) I/3 cm

(4) Ahminum is half as effective as steel

in withstanding penetration.

(55 The use of spaced sheets (Whipple

bumpers) allows a reduction factor,

Bf = 5, in the total thickness required

to withstand penetration.

(65 Particle density, (p5 is 3 gm/cu cm.

(75 The area exposed to meteoroids is

the total unshadowed surface area of

the object. The shadowing can be ex-

pressed in terms of an effective area
by computing a factor to be multiplied

by the actual area. This reduction
factor will be in the ratio of a sphere

with a conical segment removed to a

sphere. The center of this sphere is

the spacecraft and the conical segment
is that volume intersected, as an ex-

ample, by the Earth. Consider the

following sketch

(
Earth

where

u = sin

Then

-l R /R.
0

Sf = 1 - 1/2 (1 - cos u)

1 + cos (sin -1 Ro/R)
= 1 -

2

The integral mass flux thus becomes

10-14 -10/9= m hits/m 2 sec

N (> m5 8.64 x i0 -10 -10/9= m hits/m 2 - day

Eliminating the constant meteoroid velocity

(30 km/sec), and expressing the penetration law

in terms of mass gives

p3

nl =_

as the mass in grams required to penetrate X cm

of steel. With the flux and penetration expressed

only by mass, it is convenient to combine the two

relationships, obtaining

N (>in}= 8.64 x 10 -10 (p3/101.25) -10/9

-7
= 1.46x 10

p10/3

hits per square meter per day capable of pene-

trating P cm of steel. The reciprocal of this

relation is the average number of days between

penetrations. To determine the thickness re-

quired so that an area of A meters is not pene-
trated on the average for at least T days,

P = (AT • 1.46 x 10 -7 3/10

8.901 - /10p = _ (AT) 3 , em of steel

10o

This relationship is convenient to use for purposes

of design after the effects of the time distribution

of meteoroid encounters have been included. The

Poisson distribution model has been used to elabo-

rate on meteorite encounter probabilities. This

distribution which is valid for uniform masses of

low density is

(T) K e - tT

Pkt = K'

l
where t is any selected interval, and -_ is the

average number of penetrations per day. Thus

the probability of any number, K, penetrations

during time, t can be estimated. To determine

the probability of no penetrations during T days

(T = t) the relation reduces to

-1
Pkt = e = 0. 368
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sothattheprobabilityis 0.368thattherewill be
nopenetrationswithintheaveragenumberof
daysbetweenpenetrations.Tofind thetimeat
theendofwhichtheprobabilityof nopenetrations
is 0.99.

0.99= e-t/T

t = -T in 0.99
t = 0.0101T

For 0.95 and 0.90 probabilities, the correction

factors are, respeetiveIy, 0.05 and 0. 10. For

example, the average time between penetrations

for a 93 m 2 steel surface 2. 5 cm thick is about

1.6 x 106 days. There is a 0. 368 probability

that there will be no penetrations by the end of

this time. For this structure, the limiting time

for 0.99 probability of no penetrations is 1.6 x

104 days; for 0.95 probability, 8 x 104 days; and

for 0.90 probability, 1.6 x 105 days.

Correspondingly, if the probability for no
penetration of X thickness within T is 0. 368, then

the thickness required for a 0.99 probability of

no penetrations in T days is

(Pkt at 0.99) 10/3 = p10/3
0.0101

Pkt at 0.99 = 3.97P

for 0.90 probability.

Pkt at 0.90 = 1_96X

More generally

-t (1.46 x 10 -7 ) A

In (prob) - p10/3

The relationships between exposed area and

time, aluminum thickness and penetration prob-

ability are illustrated in Fig. 33.

C. CONVERSION DATA

1. Definition of Time Standards and Conversions

(Ref. 74)

Time measurement may be based upon the

period of motion of a stable oscillator, the decay

of a radioactive isotope, or the period of any

celestial body relative to the observer. The latter

is the body chosen sometimes referred to as the
time reckoner and a clock in most astronomical

•research. The particular day is defined to be the

time span between two successive upper or lower

transits of the given time reckoner across the
celestial meridian of the observer. Noon is the

time of upper transit (the transit in the northern

celestial hemisphere). Angles measured in the

equatorial plane of the celestial sphere from the
observer' s meridian, O, westward are called

local hour angles (see following sketch). Thus

O is the local hour angle of vernal equinox. Then

local time of day is the hour angIe of the time

reckoner for days beginning at noon. Since an

international agreement in 1925, astronomical
time is reckoned from midnight, so that the local

time of day based on this origin is

T =7+ 12 h

where 7 is the hour angle of the time reckoner.
Because astronomers refer to two time reckoners,

the sun and vernal equinox, there are two kinds of

days; the solar day and the sidereal day.

L N21r: h celestial

/ _ _Observer's

/ _meridian

\ _/'-- Greenwich

/ _ meridian

The sidereal day is the interval between two

successive upper transits of vernal equinox.
Because this time reckoner is a point on the

celestial sphere, an infinite distance from the
earth, the sidereal day is the period of earth

rotation relative to inertial space. Because side-

real time is the hour angle of vernal equinox, it

is given at any instant by the right ascension of

a star that is crossing the observer' s meridian
at that instant. The best value for the sidereal

day is 86164. 091 mean solar see.

The solar day, the interval between two suc-

cessive upper transits of the sun, is 3 rn 56 s

longer than the sidereal day because the earth

moves almost one degree each day in its orbit

around the sun. Thus, the solar day is not ex-

actly equal to the period of earth rotation. Also,

the apparent sun (the sun we see) is not a pre-

ciseIy uniform time reckoner because the orbit

of the earth is slightly eccentric and the eliptic

is inclined about 23 ° to the equatorial plane. Be-
cause the apparent sun is a nonuniform time

reckoner, the mean sun is used to measure civil

time. The time unit is the average of the apparent

solar days, the mean solar day and its length is
defined to be 86400 mean solar sec. The differ-

ence between apparent and mean solar time is

called the "equation of time, " ET:

ET = AT - NIT = _A- n'M = AM- AA

where

AT = apparent time

MT = mean solar time
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_-A = hour angle of apparent sun

_M = hour angle of mean sun

A M = right ascension of mean sun

A A = right ascension of apparent sun

Civil time, CT, is mean solar time measured

from midnight,

CT = _M + 12h

The local civil time at the Greenwich meridian

is known as universal time, UT, or Greenwich

mean time, GMT.

The difference in local time at two places for

the same physical instant is the difference in

longitude, k"

T I - T 2 = k2 - k I

where k, in the astronomer's convention, is meas-

ured positive westward from the Greenwich merid-

ian. This equation applies for T measured in any

system of local time, i.e., civil, apparent solar

or sidereal times. For example,

LMT = LCT = UT - k

Fifteen degrees of longitude corresponds to an

hour of time difference, so that for local mid-

night at Greenwich, the corresponding local times

at k = 15 ° W and 30 ° W are II:00 p.m. and 10:00

p.m., respectively. The local time increases

for eastward longitude changes.

Since local civil times are the same only along

a given meridian, some confusion is avoided by

the use of time zones. The earth is divided into

24 zones, each fifteen degrees of longitude wide.

In the middle of each zone, at the "standard me-

ridian, " local time differs from Greenwich time

by an integral number of hours. The time read

on a clock at any place, i.e. , standard time, is

the local civil time of the standard meridian

nearest the clock. Standard time differs in some

places from zonal time where boundaries are

twisted to suit geographical and political bounda-

ries.

Greenwich civil time is generally the system

employed in astronomical almanacs. Therefore,

conversions required most often are standard to

GMT and GMT to standard. The conversion from

a zone time to GMT is effected by dividing the

longitude (in degrees) of the observation site by

15 and obtaining the nearest whole number. This

value is added to the zone time for sites west of

Greenwich and subtracted for sites east of Green-

with.

k °

GMT = ZT ±-i_

The same rule applies for conversion of standard

times, exeept that the irregular boundaries for the

time zones must be utilized.

The preceding discussions provide the basis

for an appreciation of the measurement of time

intervals; however, in order to relate any two

events in time it is necessary to refer them to the

same time reference. For earth satellite prob-

lems this requires only that an epoch be selected
and that the universal time be recorded at the in-

stant. A record of time by days and/or seconds
from this epoch thus relates all of the events. In

other problems where two or more bodies are in-

volved such an arbitrary solution of the time origin

for one body may lead to unnecessary con_plexity
due to the fact that all of the various time scales

must be correlated each time a computation is

performed. To avoid such a situation the Julian

day calendar was established by the astronomers.
This calendar takes the origin to be mean moon

4713 years before Christ and is a chronological
and continuous time scaleji, e., days have been

counted consecutively from this date to present.

This practice avoids problems resulting from the

nonintegral period of the earth (365. 2563835 mean

solar days) and the difficulties of months of differ-

ent length. On this calendar January 0 (i. e. ,

mean noon January I) 1900 is 2415020 mean solar

days. The conversion of other dates in the later
half of the 20th century is facilitated by Table 37

obtained from The American Ephemeris and
Nautical Almanac.

2. Review of Standards of Length and Mass

For many engineering purposes the conversions

between units of measure need be known only to

two or three significant figures. For this reason

a general unawareness of the definition and use of

these units has resulted and is evidenced by in-

consistencies in the literature. The purpose of

this section is to redefine a set of units and specify

accepted conversions from this set to other com-

monly used systems.

a. Standard units

The United States' system of mass and measures

has been defined in terms of the metric system

since approximately 1900; it was refined in metric

terms in 1959. Therefore, care must be exercised

to assure that proper standards are used for all

precise computations. Before going further it is

necessary to obtain an appreciation for the bases

for measurement.

The meter was originally defined to be l/107

part o7 I/4 of a meridian of the earth. A bar of

this length was constructed and kept under standard

conditions in the Archives. Since subsequent meas-

urements of the earth proved th_s definition to be m-

correct, a new international standard, the Prototype

Meter, was defined to be the distance between

two marks on a platinum-iridium bar at standard

conditions. This bar was selected by precise

measurement to have the same length as the bar

in the Archives. National standards were also

produced and compared to the Prototype Meter.

In October 1960, at the Eleventh General Con-

ference on weights and measures, the meter was

redefined to be 1,650,763.73 wavelengths of the

orange-red radiation of Krypton 86. However,

the bar standards are also maintained because of

the ease of measurement.

The kilogram was originally defined to be the
mass of I000 cubic centimeters of water at its

maximum density (i. e. , 4 ° C). However, at the

time the Prototype Meter was defined, the kilo-
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TABLE 37

Julian Day Numbers for the Years 1950-2000
(based on Greenwich Noon)

Year Jan. 0.5 Feb. 0.5 Mar. 0.5 Apr. 0.5 May0.5 June0.5 July0.5 Aug. 0.5 Sept. 0.5 Oct. 0.5 Nov. 0.5 Dec. 0.5

1950 243 3282 3313 3341 3372 3402 3433 3463 3494 3525 3555 3586 3616

1951 3647 3678 3706 3737 3767 3798 3828 3859 3890 3920 3951 3981

1952 4012 4043 4072 4103 4133 4164 4194 4225 4256 4286 4317 4347

1953 4378 4409 4437 4468 4498 4529 4559 4590 4621 4651 4682 4712

1954 4743 4774 4802 4833 4863 4894 4924 4955 4986 5016 5047 5077

1955 243 5108 5139 5167 5198 5228 5259 5289 5320 5351 5381 5412 5442
1956 5473 5504 5533 5564 5594 6625 5655 5686 5717 5747 5778 5808

1957 5839 5870 5898 5929 5959 5990 6020 6051 6082 6112 6143 6173
1958 6204 6235 6263 6294 6324 6355 6385 6416 6447 6477 6508 6538
1959 6569 6600 6628 6659 6689 6720 6750 6781 68t2 6842 6873 6903

1960 243 6934 6965 6994 7025 7055 7086 7116 7147 7178 7208 7239 7269
1961 7300 7331 7359 7390 7420 7451 7481 7512 7543 7573 7604 7634
1962 7665 7696 7724 7750 7785 7816 7846 7877 7908 7938 7969 7999
1963 8030 8061 8089 8120 8150 8181 8211 8242 8273 8303 8334 8364

1964 8395 8426 8455 8486 8516 8547 8577 8608 8639 8669 8700 8730

1965 243 8761 8792 8620 8851 8881 8912 8942 8973 9004 9034 9065 9095

1966 9126 9157 9185 9216 9246 9277 9307 9338 9369 9399 9430 9460
1967 9491 9522 9550 9581 9611 9642 9672 9703 9734 9764 9795 9825
1968 9856 9887 9916 9947 9977 *0008 *0038 *0069 *0100 .0130 .0161 _0191
1969 244 0222 0253 0281 0312 0342 0373 0403 0434 0465 0495 0526 0556

1970 244 0587 0618 0646 0677 0707 0738 0768 0799 0830 0860 0891 0921

1971 0952 0983 1011 1042 1072 1103 1133 1164 1195 1225 1256 1286
1972 1317 1348 1377 1408 1438 1469 1499 1530 1561 1591 1622 1652
1973 1683 1714 1742 1773 1803 1834 1864 1895 1926 1956 1987 2017
1974 2048 2079 2107 2138 2168 2199 2229 2260 2291 2321 2352 2382

1975 244 2413 2444 2472 2503 2533 2564 2594 2625 2656 2686 2717 2747

1976 2778 2809 2838 2869 2899 2930 2960 2991 3022 3052 3083 3113
1977 3144 3175 3203 3234 3264 3295 3325 3356 3387 3417 3448 3478
1978 3509 3540 3568 3599 3629 3660 3690 3721 3752 3782 3813 3843
1979 3874 3905 3933 3964 3994 4025 4055 4086 4117 4147 4178 4208

1980 244 4239 4270 4299 4330 4360 4391 4421 4452 4483 4513 4544 4574
1981 4605 4636 4664 4695 4725 4756 4786 4817 4848 4878 4909 4939
1982 4970 5001 5029 5060 5090 5121 5151 5182 5213 5243 5274 5304
1983 5335 5366 5394 5425 5455 5486 5516 5547 5578 5608 5639 5669
1984 5700 5731 5760 5791 5821 5852 5882 5913 5944 5974 6005 6035

1985 244 6066 6097 6125 6156 6186 6217 6247 6"278 6309 6339 6370 6400
1986 6431 6462 6490 6521 6551 6582 6612 6643 6674 6704 6735 6765
1987 6796 6827 6855 6886 6916 6947 6977 7008 7039 7069 7100 7130
1988 7161 7192 7221 7252 7282 7313 7343 7374 7405 7435 7466 7496
1989 7527 7558 7586 7617 7647 7678 7708 7739 7770 7800 7831 7861

1990 244 7892 7923 7951 7982 8012 8043 8073 8104 8135 8165 8196 8226
1991 8257 8288 8316 8347 8377 8408 8438 8469 8500 8530 8561 8591
1992 8622 8653 8682 8713 8743 8774 8804 8835 8866 8896 8927 8957
1993 8988 9019 9047 9078 9108 9139 9169 9200 9231 9261 9292 9322
1994 9353 9384 9412 9443 9473 9504 9534 9565 9596 9626 9657 9687

1995 244 9718 9749 9777 9808 9838 9869 9899 9930 9961 9991 *0022 *0052
1996 245 0083 0114 0143 0174 0204 0235 0265 0296 0327 0357 0388 0418
1997 0449 0480 0508 0539 0569 0600 0630 0661 0692 0722 0753 0783
1998 0814 0845 0873 0904 0934 0965 0995 1026 1057 1087 1118 1148

1999 245 1179 1210 1238 1269 1299 1330 1360 1391 1422 1452 1483 1513

2000 245 1544 1575 1604 1635 1665 1696 1726 1757 1788 1818 1849 1879

1900 Jan 0.5 ET = Julian Day 2,415,020.0 =
1950 Jan 0.5 ET = Julian Day 2,433,282.0 =

Greenwich Noon, January t, 1900, a common epoch

Greenwich Noon, January 1, 1950, another common epoch and
first entry in this table
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gram was redefined to be the mass of the Proto-

type Kilogram and, as was the case with the
Prototype Meter, national standards were obtained

by comparison to the Prototype Kilogram. This

unit has not been changed to date though proposals
have been made to base the measurement on some

atomic standard. The conversion from mass to

force is accomplished by the standardized con-

stant go = 9. 80665 m/see 2.

Effective July i, 1959, the English speaking

people defined their standards of length and mass
in terms of the metric system of units. This was

accomplished through the definition of an inter-

national yard and an international pound.

1 yard - 0.9144 meter

i pound (avdp) _- 0. 453,592, 37 kilogram

These two units constitute the basis for all measure

with the exception of those accomplished by the

U.S. Coast and Geodetic Survey which continues

to use a foot defined by the old standard:

1200
1 foot = _ meter

or

360O
1 yard = _meter

= 0. 91440182 meter

Of course, other units of length, area, volume,

etc., can be related by their definition to these

more basic units. These second generation units

(for example: statute mile, nautical rnile, etc. )

are in general peculiar to particular regions and

thus only a few will be discussed in the following

paragraphs.

The astronomical unit (AU) is defined as the

mean distance from the sun to a fictitious planet

whose mass and sidereal period are the same as

those used by Gauss for the earth in his determina-

tion of the solar gravitation constant. This defi-

nition enables the astronomer to improve his knowl-

edge of the scale of the solar system as more ac-

curate data become available but does not require

recomputation of planetary tables since angular

data can be computed with an accuracy of eight or

nine significant figures. The best value of this

unit is presently 149.53 x 106 km and the mean

distance from the earth to the sun is presently con-

sidered to be 1.000,000,03 AU.

The nautical mile was originally defined to be

one minute of arc on the earth' s equator. On this

basis the best value of this unit appears to be ap-

proximately 6087 feet. Various attempts have been

made to adopt a standard length, e. g., the British

nautical mile was defined to be 6080 feet and the

U.S. nautical mile was defined to be 6080.20 feet.

In 1954, it was agreed to standardize the nautical

mile by defining it in terms of the meter. As a

result, the international nautical mile was defined

to be 1852 meters, or, based on the conversion

between feet and meters at the time, 6076.10333

feet. But with the redefinition of the foot (l foot =-

0. 3048 meter) as of July 1959, the nautical mile

changed once again to 6076. 11549 international feet,

approximately. This value has been accepted by

the National Bureau of Standards and all respon-

sible agencies.

The statute mile --- 5280 international feet.

The meter was previously defined; however,

many units of length have been defined based on

the prime unit and related by powers of I0. Ac-

cordingly the following prefixes have been intro-

duced and are generally recognized:

tera, meaning 1012

giga, meaning 109

mega, meaning 106

kilo, meaning 103

heeto, meaning 102

deka, meaning 101

-1
deci, meaning t0

centi, meaning 10 -2

milli, meaning 10 -3

micro, meaning 10 .6

nano, meaning 10 -9

pico, meaning 10 -12

The yard -= 0.9144 meter

-= 3 international feet

The foot = 0.3048 meter

-= 12 international inches

The inch _- 0.0254 meter

- 103 mils

The micron -= 10 -6 meter

The angstrom _ 10 -10 meter

3. Mathematical Constants

= 3.141,592,653,6

2_r = 6. 283, 185,307,2

3w = 9. 424,777,960, 8

lOgl0_r = 0.497,149,872,7

logeW = 1.144,729,885,8

e = 2. 718,281,828,5

lOgl0e = 0.434,294,481,9

2
e = 7,389,056, 102

lOgel0 = 2. 302,585,091

l/w = 0.318,309,886,0

1/2rr = 0.159,154,943,0

1/3'_ = 0.106,103,295,3

360/2'n" = 57,295,779,51
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1/e
1/e2

= 0.367,879,441,0

= 0. 135,335,283,1

4. Time Standards

10 -7

1 second = 3. 155,692,597,47

times the Besselian (tropical,

solar) year at 1900.0 and 12 hr

ephemeris time

1 mean solar sec _ (1 + 10 -9) ephemeris

seconds in 1960

sidereal day = 86, 164. 091 mean solar
seconds

sidereal year = 365.256,383,5 mean

solar days

sidereal year = 3. 155,814, 9 x 107 mean
solar seconds

5. Conversion Tables

Ready conversions for the more generally
used units of astronomical measurements will

be found in the following tables:

Table 38- -Length Conversions

Table 39--Velocity Conversions

Table 40--Acceleration Conversions

Table 41--Mass Conversions

Table 42--Angular Conversions

Table 43--Time Conversions

Table 44--Force Conversions

TABLE 38

Length Conversions

International

Astronomical Units Nautical Miles

I Astronomical Unit = l 80. 737, 90x I06

1 International Nautical Mile = 1. 238, 575x 10 -8 1

I Statute Mile = 1. 076,292x l0 -8 O. 868, 976,242

1Meter • O. 668. 777,_x 10 "11 O. 539, 956,803 x 10 -3

1 Internattonal Yard = 0. 611,329. 9x10 "11 0.493,736, 501 x 10 -3

1 International Foot - 0. 203, 843, 3x10 "II 0,164, 578,833 x 10 "3

I Intern_ttional Inch = 0.166, 869.4 x 10 "12 0.137,149, 02Bx 10 -4

International InLernatiDnal InternaLtonal
Statute Miles Meters Yards Feel Inches

99.911, 52x 106 149. 5266x 109 193.524.3x l09 490.5728x 109 588.687.4x l010

1,150,779,447 1859 # 2025.371,828 6079.115,485 72, 913.385, 826

1 1909.344" 1760 _ 5290' 63, 360*

0.6_1,371,192x10 -3 1 1,093.613,298 3,280,839,095 39.370,079,740

0.568.191.918x10 "3 0.9144' 1 3 e 36*

0.189,393,939x10 -3 0.3048' 0.333,333,333 1 12'

0.157.828,282xi0 "4 0.0254" 0.027.777,777 0.083,333,333 1

1 Aatronomical Unit per

Mean Solar Day • 1

1 Altronomtcal Unit per

SLclere=J. Day • 0. 997,269. 57

1 Intern&lionel Nautidal

Mile per Hour • 0. 297,268,_2 x 10 -6

I Statute M_e per Hour • 0. 258.310,__3 x 10 "6

i Kilometer per HOur = 0. 160,506,6 x I0 "6

I Meter per Second • 0.577.823,9 x 10 -6

I Foot per Second • 0. 176,210.6 x 10 -6

TABLE 39

Velocity Conversions

International

Astronomicll Units Astronomical Units Nautical MUes Statute MUel Kilometers per Meters per

per Mean Solar Da_ per Sidereal Day per Hour per Hour H_lr Second Feet per Second

1.002.737,90 3.364,079x 106 3.871,313x 106 6.230.27__3x l06 1.730.63_2x l06 5.677,928x 106

1 3,354, 892x 106 3.860, 743X 106 6.213,26._0X I06 1, 725,907X 106 5.662,424x tO 6

0.298.072,1x 10 -6 1 t.150,779,447 1.852* 0.514,444,444 1.687,809,656

0.256,017,5x 10 -6 0.868,976.242,6 1 1.609,344. 0.447,040* 1.466,666,666

0.160.946.1 x 10 -6 0.539,056,803,4 0.921,371,192 I 0.277,777,777 0.011,344,415

0.579,405,9 x 10 -6 1.943,844,49_ 2.236.936.288 3,600* 1 3.280,839,895

0.176,602.8x 10 .6 0.592,483,800 0.681,818,181 !.097,280" 0.3048* l

--Underlined digits are questlonable.

*Denotes exact conversion factor.
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TABLE 40

Acceleration Conversions

Aslronomical Un0s Astronomical Unlts _ternational Nautical Statute Miles per

per Mean solar Day 2 per Sidereal Day 2 Miles per Hour 2 flour 2

1 Astronomical Unit

per Solar Day 2 = i _. 005,483, :I0 I. 40 I, 7O0 x IO5 I.6 i3. 047 x I O5

i Astronomical t:mt

p.,r Sidereal D_v2=, 0.994,546,6O i I.a94.05_ x t05__ 1.604.250 x i05__

i Imer_atmnat Nautical

Mile per Hour 2 = 0.713,4_9,_x I0 5 0. TLT. 331,_x I0 5 I 1.150.77_.417

1 Statute M_e per

Hour 2 _ 0.619,944._ x I0 5 0.623.344,_x 10 5 o.a_8.978.24z.6 1

I Kilometer per

H_r _ _ 0.3aS.20S._x I0 -5 0.38L321,9 x 10 -5 0.539.95_.803.4 0. S'_I, 371,192

1 _leter per Second 2= 0.049,923,9_ 0.050, 19L ?0 0.899. 784.017.6 x I04 0.805. 297,064,_ x I04

I Im_.natlonal f'oot

per Second 2= 8.018,218.82 0. 015, 300,2_ 0.213.2_4. 16S.8 x I04 0. 24S.24$. 245, 2 x I04

KUometers p_*r _lernatlonal Feet per

H_r 2 Meters per Second 2 S,cond 2

2.595.989 x to5 20.030,4_ 85.716,7_

Z. 581.832 x I05 19. 921.2_ e5 _58,3_

I.S52" 1.429,012,345 x I0 4 4._8a,360, _LI x I0 -I

I._09.344_ 1.241,777.778 x 10 4 4.074.074.074 x 10 4

I 0.771._04.938.2 x to 4 2.531.512.284 x I0 4

12.9_0" _ 3. 28O, a39. 895

O.395. O2O.8OO 8.304_* 1

TABLE 41

Mass Conversions

Solar Mass Earth Mass Moon Mass

1 Solar Mass = 1 332,44_ 27,048,600

1 Earth Mass = 3. 088,062 x l0 0 1 81. 358

1 Moon Mass = 3.697,320 x 10 -8 1.229,14 x l0 2 1

1 Slug = 7.346, 18x 10 "29 0.244,25 x l0 23 0.198,72 x 10 21

I Kilogram = 5.033,73 x 10 31 0.187,3_x l0 -24 0.136, 16x 10 .22

1 Pound (avdp)= 2.283,2_x l0 -31 0.759, 15x 10 25 0.817,03 x 10 23

1 Ounce (avdp) = 1.427,04 x l0 32 0.474,47 x l0 -28 0.3Bf_,01 x 10 `24

--Underlined dlgits are questionable.

* Denotes exact conversion factor.

go _ 9'B0665_ = 32.174,048,556 fl/sec 2

Pounds Ounces

Slugs Kilograms (avdp) (avdp)

1. 381. 25 x 1029 I. 986,6 x 1630 4. 379. 70 x 1030 70. 075,_ x 1030

4.094,2 x 1023 5.975,() x 1024 ]3. 172,_ x 1024 210.7_x I024

5.032,:_x 102] 7. 344,0 x 1022 16. 191,00x 1022 259.0_x 1022

1 14.593.902,876 32.174,048,555 514,784,777,0

6.852.178,812 x 10 -2 l 2.204,622,621 35.273,961,94

3.108.095,016 x I0 -2 0.453,592,37* 1 16.0.',

1.942,559,385 × 10 -3 0.283.495, 231 x 10 -2 0,082, 5 :_ I

TABLE 42

Angular Conversions

t{e volut ions Ra d ians

1 Revolution = 1 6. 283, 185,307

1 I{adian = O. 159, 154,943 1

i I)cfiree = 2. 777,777,777 x I0 -3 1.745,329,252 x I0 -2

1 Minute of Arc = 4.629,620,620 x 10 -5 2.908,882,086 x 10 -4

1 Sccund _f A rc - 7. 716,040,382 x t0 .7 4. 848, 136, 812 x I0 -6

i AnKular Mil = 1. 5625 x 10 -4. 9. 617,477,040 x 10 -4

': I)_'notes exact con,.'ersi{m

Minutes ,_cconds

Degrees of Arc of Arc An_ular Mills

360. * 21,600. 0_ 1,2qG, 000. 0'_ 6400. ,I

57. 295, 77_, 511 3,437,746,771 206, 264,806,236 1018.591,636

1 60.0* 3,600.0* 17. 7,777,777

1.666.666,666 x 10 -2 1 60.0* O. 296,296.2!16

2.777,777,777 x 10 -4 0.016,666,666 1 4.938,271.605 x 103

5.6250 x 10 -2. 3. 375* 202. 5* 1
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TABLE 43

Time Conversions

Solar Year Julian Year Mean Solar Da_, Sidereal Day Mean Solar Sec Sidereal Sec

1 Solar or 1 0.999,978,641 365.242, 198 366.242, 1_8 3. 155,692,59 x 107 3. 164,352,57 x 107

Besselian Year

1 Julian Yeal' 1. 000,021,358 I 365. 25* 366. 256,00* 3. 155. 760* x 107 3. 164,400, I6 x U} 7

1 Mean Solar Day = 2. 737,909,26 x 10 -3 2.737,850,787 x 10 3 1 1.002,737,_0 8640()* 86636.555

1 Sidereal Day 2.730.433,61 x 10 3 2.750,375.42 x 10 5 0.997,269.57 1 66164.0t_1 8641)I1 '_

1 Mean Solar See 3. 168,876,46 x 10 8 5. 168,808, 78 x 10 -8 1. 157,407,40 x 10 -5 1. 160.576,27 x 10 -5 1 1. 062,757, 01t

1 Sidereal Sec 3. 160.224.1t8 x 10 -8 3. 160, 156,58 x 10 -8 1. 154,247o 18 x 10 -5 1. 157°407,40 x 10 -5 0,997,260,57 1

':'Exact conversion

TABLE 44

Force Conversions

gg (force) Pound (force)

1 Kg Force i 2.204,622,621

I Pound 0.453,592,370, i i

1 Newton 0. i01,971,621,2 0.224,808,943

1 Poundal 1.409,808,183 x 10-2 3. 108,095,501 x 10-2

1 Dyne 1.019, 716,212 x i0 -6 0.224,808,943 x 10 -5

*Exact conversion

Newton Poundal

9.806,65* 70.931,635,35 9.806,65 x 105*

4.448,221,62 32.174,048,6 4.448,221,62 x 105

1 7.233,013,85 105

0.138,254,954 1 0.138,254,954 x 105

10 -5 7.233,013,85 x 10 -5 1
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Fig. 30. Meteoric Mass Versus Apparent Visual Magnitude
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!!I, ORBITAIe MECHA_C_S

SYMBOLS

a Semimajor axis

A Right ascension

b Semiminor axis

e Eccentricity

E Eccentric anomaly

f Force per unit mass

F Force or hyperbolic anomaly

g Acceleration due to gravity

h Angular momentum

i Inclination angle of the orbit to the equatorial

plane

I Moment of inertia; integral

K Kinetic energy per unit mass

L Latitude

m Mass

M Mean anomaly

n Mean motion (mean angular velocity)

p Semiparameter or semilatus rectum

P Potential energy per unit mass

r Orbital radius

r a Apogee radius

r Radius to semiminor axis
m

r Perigee radius
P

b Radial velocity

F Radial acceleration

t Time

t
P

T

U

V

V
a

V
P

B

0

d

g

A

U

CO

f2

f?
e

Time of perigee passage

Kinetic energy per unit mass

Potential energy per unit mass

Velocity

Orbital velocity at apogee

Orbital velocity at perigee

Components of position

Angle of elevation above the horizontal plane

Azimuth angle measured from North in the

horizontal plane

Flight path angle relative to local horizontal

Total energy per unit mass

Orbital central angle between perigee and

satellite position

Angular velocity

Angular acceleration

Longitude (positive for East longitude)

Earth's gravitational constant 1. 4077

x 1016 ft3/sec 2 (398, 601.5 km3/sec 2)

Angle between the ascending node and the

projection of the satellite position on the

equatorial plane

Orbital period over a spherical earth

Orbital central angle between the ascending
node and the satellite (0 + co)

Argument of perigee

Longitude of ascending node

Rotation rate of the earth (2u bad each
86164. 091 mean solar sec
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A. INTRODUCTION

The purpose of this chapter is to present data

pertaining to the more elementary laws and con-

cepts of orbit mechanics. The bulk of the material

consists of graphs and tabulations of formulas for

motion in elliptical orbits. In additior_ a brief in-

troductory treatment is given of the theoretical

background. Many excellent books are available

in the areas of analytical dynamics and celestial

mechanics (see the bibliography at the end of the

chapter). Therefore this chapter will only treat

the material in outline form with no particular

attempt to present a generalized and rigorous
treatise on classical mechanics.

B. MOTION IN A CENTRAL FIELD

To a first approximation the earth can, dy-

namically, be considered as a point mass located

at the geometrical center of the earth. This im-

plies that the mass distribution of the earth exhibits
spherical symmetry, an assumption that does not

strictly hold true and will be discussed further in
the next chapter. Additionally, the earth's mass
will be considered infinite with respect to that of

a satellite moving in its gravitational field. Finally_
no additional forces will be assumed to act on the

satellite. Under these assumptions the gravitational

mu (U = the earth's gravitational con-
force F =

r

stant) acting on the satellite will be directed toward

the stationary center of the earth. The ensuing

motion will be planar.

In a rectangular coordinate system (in the plane
of motion) as shown in the sketch below (assuming

m to be constant), we get

F
X _I X

= --m = _ rfx - cos O = - f cos 0 = - f-- = _¢"
r

(i)

F

=--_ - _J sin O = - f sin @ = - f _ = y"
rfy m r_

(2)

r F

X

The motion is, however, more easily found in a

polar coordinate system (r, 0) as shown in the
sketch below.

In this system:

F
= _f = __K_ =_" - r0

m 2
r

(3)

F o 1 d (r 2 _))=O=r_" +2_ =7 _-
m

(4)

V

FO_Fr

P
From Eq (4) it follows that:

r 2 0 = constant = h (5)

This constant is the angular momentum defined from
vector mechanics. SubstitutingEq (5) in Eq(3) re-

suits in

h 2

r' = -_-- f.
r

Now letting r = 1 it follows that
U

f = h 2 u 2 (u + d-_)d2u = u u2

where time has been eliminated by:

(6)

du
1 _= 1 du _=_h -

=--_ --_ _-6 dO
U U

and

r" =- h_t (_0_ = - h2 u2 d2u
d0 2

Equation (6) can be written

d2u u
+U -

de2 h 2

the solution to which can be recognized as:

U + Ccos (O - O 0)
u=_-:

or in terms of r the solution is

r =

h 2

h 2
1 +-- C cos (0 - O 0)

- P
i + e cos (0 - 0 0)

(7)

The last form of Eq (7) is the standard form of a

conic with the origin at one of the foci. From

Eq (7) it can be seen that the semiparameter p
h 2

(semilatus rectum) is p = -_- and the eccentricity

h 2
e is-- C = pC. If e < I the conic is an
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ellipse;if e =0 it is a circle; if e = 1it is a parab-
ola,andif e > I it is anhyperbola.

C. LAGfgANGIAN E(_UATION

The preceding integration of the equations of

motion is based on an elementary approach. At

this point a brief digression wilt be made into the

more general LaKrangian technique often used in

orbit mechanics, and encountered in Chapter IV.

The Lagrangian equation for a conservative sys-
tem is:

UI- - cZ_ti =0
(8)

wilcre the Lagrangian is L = T - U, T is the

kinetic energy of the system and U the potential

energy. The q's are generalized coordinates.

Fop a two-body central force case the La_ran_ian

= 1
is (in polar coordinates) L = T - U _ m (i "2 + r202)

- U (r). With ql = 0 and q2 = r we get:

- = n = o = Pc (o)

2"
where P0 : mr 0 is the anFular momentum of the
system

a nd

dT _-_- r - T-r--r :d-T _ - m - Or

or, since

aU
= - F(P}

(mr') - mr{) 2 = - F(r)
dt

(lO)

From Eq (9) it follows that r 2 0 : constant. (This

is commonly referred to as the law of areas. )

The orbit can be found by eliminating t from

Eq (10). From Eq (9)

2d0
mr _ = P0

we can conclude that

d PO d

i_q r

and

dt 2 mr 2 dO 2

Substituting this in Eq (10) we get:

2

r 2 dO 3 = - F(r)\ n] r n] r

i
or using U = --

r

(11)

2 2

P0 u {d2u u) 9

which, since P0 = hm, is identical to t<q (6).

D. ORBITAL ELEMENTS

Equation (7) for the conic which embodies

Kepler's first law defines the planar orbit of the

satellite when the constants p, e and 00 are prop-

erly evaluated from a set of initial conditions,

such as V, r and y, where Y is the flight path

angle as shown in the sketch below. Note that

0r = V cos 7 and hence _)r 2 = r V cos 7 : h =

Constant =

Y r

• v

_x

!
The three constants p, e and 00, or any of a number

of equivalent sets of constants, describe completely

the geometrical properties of the ellipse in the plane

of motion. From a kinematic standpoint one more

quantity is needed to specify the position of the

satellite in its orbit. Frequently this specification

is given in the'form of the time of perigee passage,

although a knowledge of the position at any time is
sufficient.

Finally the plane of the satellite orbit nmst be
described with respect to some reference plane.

This description requires that two additional quanti-

ties be specified, for example, the inclination of the

orbital plane with respect to the reference plane and
the orientation in the reference plane of the line of

intersection between the two planes. The complete

specification of the orbit therefore requires knowl-

edge of six quantities, commonly called six elements
of the orbit. Under the simplifying assumptions

made in this chapter with respect to the dynamics
of the orbital motion, these elements will be con-

stants, whereas in the actual physical situation they

will generally be varying as functions of time.

A set of orbital elements in common usage is:

Semilatus rectum = p

Eccentricity = e

Time of perigee passage - t
P

III- :3



Inclination of orbit plane (with respect to

earth equatorial plane) = i

Argument of perigee (with respect to ascend-

ing node) = w

Longitude of ascending node (with respect to

vernal equinox) = _2.

E. MOTION IN THREE DIMENSIONS

From the solution of the orbit as expressed in

the orbital plane, i.e., r =i + feos 0" an expression

can readily be obtained for the three-dimensional

description of the motion in any coordinate system.
For this purpose define a coordinate system (x, y,

z) in the orbital plane with the x-axis pointing

toward perigee, the y-axis pointing in the direc-

tion of r at 0 = 90 ° , and with the z-axis completing

a right-handed Cartesian coordinate system. In

this system the defining equations for the motion

are x = r cos @, y = r sin @ and z = 0. To trans-

form these equations into the (x', y', z f) system

shown in the sketch, the following transformation

applies: z'

Y

X I

_y'

x r] _-COS _cos w - Cos _sin _ sin _sin i Fx 7

| |- sin _cos isi .... in QCOS i ....
/ !

y'l= ]sin _2cos a - sin l?sin tJ - cos .qsin

/ / - c°s _2c°s i sin W + cos acos i cos w

zj Lsin i sin w sin i cos w cos i

Hence, since x = r cos e, y = r sin @, z = 0,

x' = A' r cos 9 + B' r sin e, etc., etc.

where

A' = cos _cos w - sin _cos i sin w

and

B' = - cos Qsin w - sin _cos i cos ¢0

Now, since the orbital elements _, w and i are

constant for this discussion the velocity com-

penent s are:

' = A' .(i" cos 0 - r sin 0 _))+ B' (r sin 0 +

r cos e b)

where

r_) = _'-_ (I + e cos O)

and

•r =e sin O

Similar expressions are found for the other coor-

dinates. To reduce this description in inertial

space to one of position relative to the rotating

earth the following transformation is required

IXr I°einilIilYqlsincos
zrjk 0 0

where _2 is the rotational rate of the earth and
e

t is the time since the x -axis, being in the prime
r

meridian, passed the x' -axis, the x I axis is ori-

ented toward the vernal equinox.

z r (north)

T x r

The sketch also shows the right ascension A

and the geocentric latitude L.

and

X !
A = arc cos

Z f Z
L = arc sin -- = arc sin-

r r

The longitude relative to the prime meridian

measured positive in the direction of rotation is
thus A =A - _2 t.

e

F. PROPERTIES OF ELLIPTIC MOTION

Before progressing to a detailed discussion of

the motion, two general properties should be con-
sidered.
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Equation(5): r2 {)= r (r()): 2dA=h : constant
expressestheconservationofan_ularmomentum
andis a consequenceof thefactthatthemoment
offorceaboutthecenterof motionis 0. It is also
tileequivalentof tile "Lawof t:;qualAreas"known
asKeplerfssecondlaw. It is a generallawof
centralmotion(i.e., for'anyforcedirectedtoward
a fixedcenterof attractionandhencehavin_zero
momentabouttlnispoint)sinceit wasobtainedwith-
out recoursetoanyspecificforcelaw. Since
1r (r()) is thedifferentialareadAsweptbytile

1
radiusvector, oneobtainsA =-_ht +constant,
andhence,Kepler'ssecondlaw: theradiusvector
ofany'givenplanetsweepsthroughequalareasin
equaltime.

Thetime r to completea revolutioncaneasily
befoundsincethe.areaof theellipseis 7taband
sinceb =av_p,oneobtains

2_r 3/2
q" - _ a

/

Hence, Kepler's third law: the squares of the

periods of the planets are to each other as the

cubes of their semimajor orbital axes, or

2 3
'7- a

1 1
=

2 3
r 2 a 2

It also follows from lgq (5) that () h
= T of

r

the ang-ular velocity is inversely proportional to

the square of the radius vector.

An important integral of the equations can be

obtained by multiplying Eq (1) by 2 k anti Eq (2)

by 2)', and adding them.

• • • 2f (xk+ 5')2"xx +2 ('y =- r 2'

or

dt +v,, = - rf dtd 2 +y

f d
- 7: cqT ' '_r21 = - 2ix"

If now f is a function of r only, the entire equa-

tion can be integrated to yield:

.2 .2 2 {_

x + y = v = - 2 _f(r) dr + constant =

2 V(r) + c,

where V(r) in a physical problem is a single valued

function of r. TInis equation is known as the "vis

viva" integral. The velocity is, in other words,

only a function of the distance from tile center of

attraction . V (r) is the potential of the force f(r)

(in our case, f (r) =-"_ ). Thus, V(r) = K and
r

2 2u r
v = -- + constant, where the constant is found

r

to be equal to - _/a for elliptical motion, zero for

parabolic motion, and ÷ u/'a for hypert)olic motion.

In terms of the initial conditions v and r, the mo-

tion is elliptical, parabolic or hyperbolic depend-

ing on whethe, v 2 - 212 is negative, zero or
r

positive, respectively. Thzs equation is inde-

pendent of the initial flight path angle 5'. Vor

elliptical orbits the resulting sere!major axis is

given by

OF

r._ (t iv. 1)
a - 2

212 - rv

l"V = g

For a circular orbit r = a and tile circular orbit

velocity is given by

V C = Ua_--.

For a parabolie orbit a is infinite and the so-

called escape speed or parabolic orbital velocity
becomes

Ves C = _ •

So far only the Feometry of the orbit has been
determined, and it has been obtained through the

elimination of time from the equations.• To com-

t)het{ , th{ solutioll t_)r elliptic m¢)tion, tinn' is

reintroduced by substituting the area int_,gral

i '2 0 = h = I12a (1 - e 2)

[gq (5)] , into the "vis viva" integral which in

polar coordinates For elliptic motion takes tile
form:

9 . 2 r2 2 2 1v- = r + b =12 (7-g).

Thus

r = --d7 = @ - (a - r)
ar

or

r _ a/u dr
dt = .

l a e 2 - (a - r) 2

Now, introducing the mean angular motion

27r 1
= - u--

"r a la
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results in tile equation

n dt -
r dr

a 2a 2 e - (a - r) 2

To clean up this equation a new variable E is

introduced defined by a - r = ae cos E from which
r : a (1 - c cos E) and

n dt: (i - c cos E) dE.

This equation is integrablc and yields upon inte-

gration

n (t - to ) : E - sin E

This equation is commonly referred to as Kepler's

equation.

Because of tile importance of and general interest

in circular velocity, period and the mean angular

velocity (mean motiorl),these quantities have been

computed and presented in various forms in Figs. 7

and 8 and in Table 9 in both Fnglish and metric units.

The quantity E is called the eccentric anomaly

(anomaly = angle or deviation). Its geometrical

significance is shown in Fig. 4. The angle 0 is

referred to as the true anomaly. The quantity

n(t - tO ) is the angle which would be described by

the radius vector had it moved uniformly at the

average angular motion. It is called the mean

anomaly and designated by M = n (t - to).

Hence, M = E - e sin E. This transcendental

equation in E is known as Kepler's equation. Time

from perigee passage for elliptical orbits is now

obtained from:

437= a

t - tp M = (E - c sin E).

The solution of Kepler' s equation for' time

as a function of position is direct since there

exists a unique value of E for each value of r or

0. However, the reverse determination (for

position as a function of time) involves the solution

of Kepler's equation for E. This sohtion is trans-

cendental and thus requires iteration for conver-

gence to the proper value of E. The best form of

this iteration (assuming that a reasonable estimate
of E is available) is Newton's method which is ob-

tained directly from the Taylor ,_eries expansion

of M as a function of the estimate of E and the

mean anomaly. All higher order terms are neg-

lected.

+d-_ (M) AE + ..M = M °

or

& E = --
M - M 0

M - M 0
_- =

1 - c cos E

(E 0 - e sin E 0) + M

1 - e cos E 0

This form can be further modified to yield the new

estimate of E directly by substituting

E = E +AE
n+l n

e (sin E - E cos E n) + Mn n

i - e cos E
n

This series solution converges very rapidly and

generally requires only two iterations for' six or

seven significant figures (given a two-place esti-
mate). Since one means of obtaining such an

initial estimate is a graph or nomogram, a nu-
merical solution of Kepler' s equation may be found

in Fig. 2.

A peculiar" property of elliptic orbits is that

the velocity vector at any point can be broken into

components, V b and V d (_7 = _b + {Td)' such that

V b is constant in magnitude and perpendicular to

the radius from tile point of attraction to the instan-

taneous point in the orbit and V d is constant in

magnitude and continuously directed normal to the

major axis of the ellipse. This behavior is ilhs-
trated in the following sketch.

Since _?d is constant, onlY_b contributes to the

acceleration, and solely by a change of direction,

i.e., the acceleration must be radial and such that

a = a r = - Vb0

where D is the angular rate of the tadius vector.

But, tile acceleration at any point can also be ob-

tained from the gradient of the potential function

(which, in the case of a spherical homogeneous

earth, or one constructed in spherically concentric

homogeneous layers is _).

x v,i

_t

Therefore

= tl
- ar = Vb0 = r_-ff or V b 7r

Now since the acceleration is directed toward

the center of mass, the moment with respect to

this center must be zero, or

2 "
r 0 = constant = h = r V cos Y

III-6



This equation is recognized as the equation for

conservation of angular momentum, or the area
law.

Thus

Vb : u = K = U = _-r 2 h r V cos y

The second component of the velocity, Vd,
can be evaluated from the law of cosines.

Vd 2 = Vb2 + V 2 - 2V b V cos 7

This equation reduces to the following upon
substitution

(} =eV 
The quantities V b and V d can also be evaluated

from the sketch when it is noted that

Vp = V b + V d

V a = V b - V d

Now assuming that the apogee and perigee radii
are known

Vb = u I +

<,b
The total energy in the orbit can also be related

to these fundamental quantities. This is aecom-

plished as follows:

Potential ener_
unit mass

= _ tl

r

= -d - _--- = -KE - _---
2 2a 2a

Total energy

unit mass
= Kinetic energy

unit mass

+ Potential energy
unit mass

_U__=
2a

Vb2 - Vd2

This representation of the orbit also offers a

simple means of determining the direction of the

line of apsides of the orbit . The line of apsides

is determined from the })receding sketch by

sin _ tan

tan 9 = Vb r
-- - l

V - cos Y P

G. LAMBERT'S THEOREM

In Chapter VI, the problem arises of determin-

ing an ellipse from a given time interval between

two points on an arc of the ellipse as described by

the two radius vectors terminating on the arc.

From Kepler's equation and the definition of the

true anomaly, one obtains

n At = E 2 - E 1 - e (sin E 2 - sin E l)

A0 = cos -I {P - r2_- cos -I (P---_

\ er2/ \ erl/

From these equations the ellipse can he deter-

mined. The simultaneous solution of these equa-

tions for a and e is, however, very difficult since

the numerical iterative solution is quite sensitive

to the accuracy of the first estimates of a and e.

This problem is circumvented by the use of gam-

bert's theorem which can be developed as follows:
Let

2G = E 2 + E 1 and 2g = E 2

r I = a(l - e cos E l)

r 2 = a(l - e cos E 2)

-E l

Thus

r I + r 2 = 2a(l - e cos G cos g)

Let C be the chord joining the extremes of r I

and r 2 as shown in the following sketch.

b 2 acT r,
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C2= (acosE2 - acosEl)2

+ (bsinE2 - b sinEl)2

Butthequadraticformsin cosE1, cos E 2 and

sin E l , sin E 2 can be reduced to functions of G

and g to yield

C 2 = 4a 2 sin 2 G sin 2 g

+ 4a 2 (i - e 2) cos 2 G sin 2

Now introducing a new variable h defined as follows:

cos h = e cos G

leads to

C 2 = 4a 2 sin 2 g (i - cos 2 h)

= 2a sin g sin hC

and

r I + r 2 = 2a (i - cos g cos h)

Now introducing two new variables

= h+g

6 = h-g

enables the following equations to be written

1
1 (c + 6) = e cos [(E 2 + E l )COS -_

+r2+c :2 (l-cos(b+ l)r I

4a sin 2 L
2

+ r 2 - C = 2a ( 1 - cos (h - g))r 1

: 4 a sin 2 6

These equations serve as the definition of tile

quantities c + 6. But

n (At) = E 2 - E l - e (sin E 2 - sin E 1 )

1 ({ _ 6) cos 1 (( + 6)
= (E - 5) - 2 sin-_

= c - 6 - (sin e - sin 6)

which is known as Lambert's theorem.

This form of the time equation may seem to

have no major advantages. Closer examination,
however, shows that for the case where the At is

specified for" transfer from r 1 to r 2 through a

given A0, and it is desired to find the unique ellipse

whose parameters are a + e, this form may prove

preferable. This conclusion is based on the fact

that for this case oniy one variable of interest a

appears explicitly though it is necessary in the

process to solve tor the auxiliary parameters

+ 6. One source of possible error is the selec-

tion of the proper quadrants for the angles _ and 6.

This selection may be accomplished by referring

to the following statements.

6 .

(1) sin _ is + (a) the arc includes perigee
and the chord intersects

the perigee radius

(b) the arc excludes perigee
and the chord does not inter-

sect the perigee radius

(That is, sin 6/2 is positive when the seg-

ment of the ellipse formed by the are and
chord does not contain the center of mass.)

(

(2) cos _ is + (a) the arc contains perigee
and the chord intersects

the apogee radius

(b) the arc does not contain

perigee and does not inter-

sect the apogee radius

(That is, sin c/2 is positive when the seg-

ment of tim ellipse formed by the arc and

chord does not intersect the apogee radius.)

(3) 0< } ¢ < 7r

(4) _ < _ 6 <

More detailed discussions of the reasoning for"

selecting these quadrants are presented in Ref. 1.

Graphical solutions to this form of the time

equation are also possible. One such solution was

prepared by Gedeon (Ref. 2). Let

2s : rl + r0+ C

and

C 2 r 1 + r - 2r lr 2 cos A0
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Nowdefineafunctionw

w=± ll -C/S

wherethe+ signis utilizedif A¢<7randthe
- signis for /xO > 7r.

Expanding the previous solution nat in a power
series for the ease that the empty focus falls out-

side of the area enclosed by the arc and the chord
yields

c.e

nat= _2___j An _-_ ,2n+3 (_a) n

n=0

A 0 = 1

A = 1.3.5 . . . (2n - 1) = !2n - 1). _
n 2.4.6.8 . 2n 2n.'

In a similar manner, a power series representa-
tion can be obtained for the case in which the arc

and chord enclose the empty focus

c_

( /2a)3/2 - _._ Ang-H-g_l+(W)2n+3
n=0

Force center'

where the A are the same as those defined
above, n

Graphical presentation of this material is

found in Figs. 9 and 10.

H. THE N-BODY PROBLEM

The previous discussions have been directed

toward the description of the motion of a particle

in the gravitational fieid of a mass sufficiently

large that the perturbation due to the particIe is

eompietely negligible. Indeed the attractions of

all other masses on both the particle and the

central mass were neglected. The discussions

of this section are intended to provide the

generalizations which are possible in order that

the discussions of perturbation methods of

Chapter IV will be appreciated.

Consider the differential equations

n _ _

mir i = -Gin i mj (ri zrJ)
r..

j = 1 l]

This set is of the order 6 n due to the fact that

there are 3n coordinates (xiYiZ i) expressed as

second order differential equations. A rigorous
solution thus involves the simultaneous solution

of the n second order vector equations.

Since these forces are all conservative, it is

also possible to express the total force acting on

the vehicle as the gradient of a work function.
Let

F. : -_7. U
l I

Then

0U
Fxi = mi_ i = -

1

.. OU

Fy i = miY i = _

Fzi = mizi OU= - zgzF, i : 1 ..... h
1

multiply Fxi by x, Fy i by), Fzi by z and add

n

i=1

m i (xix i + YiYi + "z'i_i) :

n

i=l

But if a potential exists, U is a function of the 3n

variables x i, Yi' z.z alone. Thus, the right-hand

side is the total derivative of U with respect to t.

Thus, upon integration

IlI-9



I Z2 mi (xi2 + Yi 2 + zi2) = -U + constant

or

T + U = constant (energy equation)

Now, potential energy is the amount of work re-

quired to change one configuration to another.

Thus, since the bodies attract each other ac-

cording to the law of inverse squares, the force
between bodies is

-_ G i m i m. J _..
F = - 2 D

r..
q

Thus, the work is moving along the radius r. is
13

r..

w .... G m.m. l_.j .j__dr

1.] 1 "] J r..

r(0)ij k]

=- Gmimj [l 0 }] ij

Now if r (0) is _ , all possible system configura-

tions are included. Thus

Gm.m.

w.. = --

1] r..
zj

Now the total work is the double summation of

the individual works

n n

LzOmmWT = U = 2 r..1 j

j=l i:1 D

¢j

The one-half arises from the fact that if i and j

are both allowed to assume all values, each term

in the series will appear twice in the equation.

Now following an argument of Moulton (Ref. 3),
it can be stated that since the potential function

depends solely on the relative positions of the n

particles and not on the choice of origin, the

origin can be considered to be displaced to any

new point, yielding:

r[ - _i + 70

r 0 =_+_y+a2

Thus

n

0U _" 0U ax_ I

i--1

where

@x.
x' = X. + _; l

t ]. _--_-- = 1

But U does not involve c_ explicitly, since it is a

function of relative position thus upon dropping

the prime which is now of no value

n

Z OU =0Ox.
i=l t

n n

Z-- ISimilarly for 0 U and a z.
8 Yi t

i=l i=l

Thus

n

"--r. =0
mi t

i=I

n

Z -r. = _
mi l

i=l

and

n

Z
i=l

m.r.:Ct+B
l 1

But_ m i rq is by definition M R which is the

product of the total mass of the system and the

position vector for the center of mass. Thus

MR=Ct+B

This equation states that the center of mass obeys

Newton's law F = ma (where F = 0 = the resultant

force) and moves with a constant velocity in a

straight line under the assumption that there are
no net forces acting on the center of mass. This

integral introduces six constants of integration

to the system requiring 6 n such constants. Now
consider:

°.

mi ri = _i U

r i x m i r i = r ix _i U

n n

r i x m i r i = r i x U

i=l i=l

But the forces occur in equal magnitude and

opposite directions for any given pair of masses.

Thus, the right-hand side of the equation is zero
when summed over all the masses and
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n

r i x m i r i = 0

i=l n

i=l

_t (ri x m i r i)

n

d V" _ :*

= d-[ _ {ri x m i r i)

i2-_1

Thus by direct integration once again it is seen

that the total angular momentum is conserved

n

(r i x m i r i) = h

i=l

Since this is a vector equation, three additional
constants have been introduced.

One more relationship between the coordi-
nates and velocities can be obtained from the

energy integral, the general form of which was

presented earlier. Thus, ten integrals exist. These

ten are the only integrals known and are the only
integrals available from existing algebraic func-

tions. Thus, the general solution of the n body

problem requiring 6 n integrals is at this time

impossible even though several operations can be

performed to eliminate two variables, the line of

node and the time. (The latter simplification is

obtained by expressing each of the coordinates as

a function of a given coordinate.) The sole excep-

tion to this rule is the 2-body problem.

Consider the equations of motion

= (r1 - r 2)

m 1 r 1 = - G m 1 m 2 3

r12

._ (r-"2 - r 1 )

m2 r2 = -Gml m2 3

r12

Changing origin to the center of mass by sub-
stituting

R2 = r2 - R0

yields

"J" R1 - R2

m 1 R 1 = -Gm 1 m 2

•-- R2 - R l

m2R2 = -Gmlm2 -- 3-----

RI2

But the center of mass satisfies the equation

ml R1 + m2 R2 = 0

or

m I

R2 = - m--_ R1

Substitution of this equality eliminates _2
the equations

"-_ ml R1

R I = -Gin 2 (i + _2 )

= -G(m I + m 2)

R 2 = -G(m I + m 2)

where

RI2 = R1 - R2

from

m 1

= (i + _--_-2) E l _ m2M E1

_ -M R2
m I

Thus

"- Om2
R 1 =

•- Om} R2
R 2 =

With this substitution, the differential equations

become uncoupled in the coordinates. But these

equations are immediately recognizable as the

differential equation for a conic section with the

center of mass at the focus. Thus, as before,

the solution will be of the form

P1

R I =
1 + e I cos 01

P2

R 2 =
1 + e 2 cos 8 2

But it is important to note that the elements of

these conics are not the same though they must

be related. Indeed, the effective masses as seen

by the two bodies will be different. This latter

requirement is the result of requiring that the
line between the two bodies contains the fixed

center of mass at any time. However, it is

possible to obtain a set of six constants of in-

tegration a 1, e 1 , i 1, w1, _1' t01 and a dependent

set a 2, e 2, i 2, _2" f12 and t02 which will produce
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the desired motion. This is accomplished by
consictering various elliptic relations and the

geometry of the plane of motion. To illustrate

the relationships, consider the requirement that
the mean motions be the same.

n I = n 2

Pl P2

--'3----2-
a I a 2

I

• a 2 - a 2

The other elements are determined in an

analogous fashion.

I. SERIES EXPANSIONS FOR ELLIPTIC ORBITS

Many of the solutions to trajectory problems

can be greatly simplified by utilizing approximate
forms for the parameters involved. The general

forms of several useful series are developed in

this section, and a list of expansions is given in
Table 6 (see Section K).

Kepler' s equation can be rewritten as

E = M + e sin E (12)

By Lagrange's expansion theorem, this expres-

sion can be developed (see Goursat and Hedriek,

"Mathematical Analysis, " Voh I, p 404) in powers

of eccentricity, e.

E = M+ n dn-ie (sin n M) (13)

n=l

From Eq (12) it follows immediately that

E -M
sinE = ---

e

Therefore,

n-I d n-Ie (sin n M)
sin E = n'-] dMn--_l -

n = 1 (14)

To obtain the expansion for cos E, the auxiliary

integral function I is needed.

I _- 5 (E-M)dM

e (sin n M) d M
=- _ 'n: rdM n-

n=l

en 5d dn-2- __, _ _ (sin n M)

n=l

e n d n-2

= - _ n' r dMn_2(sinn M)

n=l

(15)

From Eq (12) by integration,

5 fI = - (E - M) dM = - e sin E dM

= - e_sinE(1-e cos E)dE

= - e (sin E - -ff sin 2E) dE

and using an arbitrary integration constant c,

2
e

I = c + e cos E - -4" cos 2E (16)

but integrating Eq (15) with respect to dM,

2_ 2_r 2_

)) IdM. = ! - dM + _ osine term dM. .)

0 0 0

21[

C4)= _ dM (17)
,J

0

Similarly, from Eq (16),

2_ 2_

0 0

2 )+ e cos E --_- cos 2E (1 - e cos E) dE

(18)

Equating Eqs (17) and (18),

2_ 2w

_ (-_) I' (- 2 e3 E )dM = -_ +-4"-" cos dE
• °,

0 0

__: e (e, - "2- + - ee + cos

+ --8- cos 3E dE

3e 2

E -T cos 2E

As for the complete integral, all the cosine terms

are zero; it follows that,

2
e

c ----
4

Finally, the auxiliary integral function becomes

2

I = e cos E + emr- (1 - cos 2E) (19)
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Next, Kepler's equalion is expressed in a
functional form:

F (E, e, M) • E - e sin E - M = 0 (20)

The derivative of E with respect to e is found

by the use of Jacobians as follows:

F
dE e sin E

" " K 1 -e cos E (21)

Differentiating, Eq (19) yields

dl e-_ = cos E +.2 - cos 2E

2

dE Sr- e sin E _- + sin 2E dE (22)

Substituting Eq (21

terms yiehls

dl
_.g = cos E

into Eq (22) and collecting

(23)

Finally, the expanszon for cos E is found from

Eqs (23) and (15) as

Note:

n-I d n-2
e

COS E = - . _ _ (sinnM)

n=l (24)

d-I _ dO
(F) = FdM and _ (F) =- F

From the basic equations of orbital mechanics,

r

-- = 1 - e cos E (25a)
a

From Eq (24), it follows that

r = 1 + i _en dn-2 (sin n M)
aM

n=l
(25b)

Squaring Eq (25a),

= 1 + _- e - 2e cos E + e

Comparing Eq (26a) with Eq (19),

(_)2 = 1 +e -2I

and immediately from Eq (15),

cos 2E

(26a)

(26b)

(r) 2 e2 _ en d n-2: 1 + + 2 (sin n M)
n ! dMn-2

n = I (27)

From Eq (20),

dE FM i

dM F E 1 - e cos E

From Eqs (13) and (28),

- n d na e __

'-_ = 1 + /__. _ dM n
n = i

It is known that

X-- = COS I_] - e
a (

V _]_ sin E I
a

= a_ (2s)
i"

(sin n _'I) (29)

(30)

Combining Eqs (30), (24) and (14).

n-I d n -2X --e - e (sinn I_,I)
/_ F6mlU_

n=l

(3 1)

v = _rl_e2 < e n-1 d n-1 (sin n M} (32)

a /_ n ! d5{n-I
n = ]

The relationships between the true anomaly and

eccentric anomaly are expressed as follows:

sin O - -e 2 sin E %"I - e
_ __dE 11 -e cos E de

=cos E-e d (r) I
cos 8 I - e cos E = - _ (33)

The first equation follows from Eq (21) and the

second by Eq (25a]

d (r) dE -cos E +e: -cos E + e sin E _ = I - e cos E

Substituting Eqs (13) and (25b) into (33),

sin 0 = I/_ _ en-I dn-i (sin n M)
/_. _ ! dMn-1

n = 1 (34)

cos O = - > ne n-I d n-2 (sin n 51)

n ='1 _-'_IT. _
(35)

The general form derivation of the time anomaly

is somewhat more complicated and will not be

attempted here. If a finite number of terms is

carried, it follows from Eq _33) that

_'_ r 2

dO ._1 -e = 'i - e 2 (a)
= (i - e cos E) 2

- 4 ,,'a ._, _ -
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2

after multiplying out (a) • the true anomalyand

follows by integration

= dM

Such an expression up to the sixth power of eccen-
tricity has been derived by Moulton.

This concludes the derivation of the series

expansions in powers of increasing eccentricity.
In general form these series are presented in
Table 6-1a. The results are given in Section K
in Table 6-1b for eccentricities up to sixth and
seventh powers.

Table 6-2a gives the n-th power of sin M in
order to simplify the use of the general equations

for expansions up to e 13. Table 6-2b indicates
the determination of numerical constants for the

expansions.

The general forms of the Fourier-Bessel ex-
pansions are given in Table 6-3a with the cor-

_ responding expansions of Bessel functions in
Table 6-3b. Table 6-4 gives the Four{er-Bessel
series expanded up to the seventh powers of ec-

centricity.

It has been shown by Laplace that for some

values at M, the series expansions may diverge
if the eccentricity e exceeds 0. 662743 . . .

For small eccentricities, the convergence is
rather rapid. Table 6-5 presents the series for

small values of e (e 2 << 1) as a function of mean

anomaly. Finally, Table 6-6 presents the
variables as a function of the true anomaly rather
than the mean anomaly.

versus f2 (fi) and fl ('0 versus f2 ('0 on linear

graph paper. It is important to note that the
same scale must be utilized for each of the three

curves. It is also important to note that the

shape of the scales thus generated is defined en-
tirely by the functional forms within the deter-
minant.

By utilizing this technique, the equations de-
fining the two body problem have been analyzed.
The type of presentation is considered to be, in
many ways, superior to any other available be-
cause of the fact that interpolation anywhere other
than on a graduated scale is eliminated, and by the
fact that more than a nominal number of variables

may be handled without losing simplicity or accu-
racy of presentation. The nomograph obtained
for equations of three variables, generally results
in three arbitrarily curved scales, U, V, and W,
as shown in this sketch.

V 1 •
U1 _

U

/

W

V

J. NOMOGRAMS

Many of the formulas of the previous sections

are of sufficiently general interest to warrant
numerical data.peing prepared for use in pre-
liminary orbit _9mputation. Accordingly, a set
of figures will _ presented relating the parameters
which have bee4[discussed. Use will be made in

this presentation of the techniques of nomography
(Refs. 3 and 4) and of more conventional forms
of presentation.

Before presenting the data however, it is de-
sirable to discuss the basis for construction of

a nomogram. If the equation can be expressed as
a determinant with the three variables separated
into different rows of the determinant and if by
manipulation, the equation can be put in the fol-
lowing form

fl (B) f2 (ID = 0

fl (_) f2 (_)

Then a homographic presentation is obtained by

plotting the values of fl (_) versus f2 (_)' fl (B)
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For the simpler cases, the scales may be simply
three parallel straight lines, or two straight
scales plus one curved scale. In all cases, how-
ever, the solution procedures remain the same.

Given any two values of the two independent

variables, say U z U1 , and V _V 1, a straight

line drawn between the two given points intersects
the third scale at the desired value of the unknown

function (W _ W1). The straight line (U 1, V 1,

W 1) is called the index line or isopleth. It is

immaterial which two variables are given and
which is considered to be the unknown function.

Four or more variables will generally result
in a sequence of 3-variable nomographs as shown
in the following sketch.

q scale

V
U

"- .. Wll

W X

OI_NA_ PA(_E f_

WYxq



Ungraduated auxiliary scales (e. g., scale q in the

given example) are employed, and the number of

auxiliary scales is N-3, where N = number of all

the variables (e. g., N = 4 in the present example).

A special case of the four-variable solution

exists for equations of the form

fl(U) f3(W)

These equations may be expressed in the form of

a proportional chart illustrated below.

U

X

I '1 I/ I,Xl/ 
]-u.

, , I I I

"77

V

Given any three values of three independent varia-

bles U = U 1, V -V 1, W =W 1, the unknownX =X 1

is found as follows:

(1) Connect U 1 and V 1 with a straight line.

(2) Draw a straight line through W 1 and the

intersection point T 1, reading X 1 on
the X scale.

K. TABLES OF EQUATIONS OF
ELLI PTIC MOTION

Because of their applicability, the equations

of elliptic motion have been collected and are pre-
sented in the form of tables. The tabular content
is as follows:

Table i Elliptical Orbit Element Relations.

This table presents a large number of

formulas relating the various fixed

parameters defining the ellipse. The

index to Table 1 (next page) is a key for

locating equations of a given parameter
in terms of other parameters. For ex-

ample, parameter b is expressed in

terms of parameters a and e in Eq (20)
of Table 1.

Table 2 Time Dependent Variables of Elliptic
Orbits.

This table gives the relationship between

the time varying parameters of the el-

lipse. The index (next page)is a key to
Table 2.

Table 3 Elliptic Orbital Elements in Terms of

Rectangular Position and Velocity Co-
ordinates.

This table is so brief that no special

index is required.

Table 4 Elliptic Orbital Elements in Terms of

r, v, _.

This brief table enables one to deter-

mine the orbital elements from given
kinematic initial conditions.

Table 5 Miscellaneous Relations for Elliptic
Orbits.

This table contains some of the special

expressLons not readily classified under
the other tables such as energy relation-

ship, time relationship and certain

angular relationships.

Table 6

Table 7

Table 8

General Forms of Series Expansions in

Powers of Eccentricity.

This table presents a variety of series

expansions as follows:

(la) General Terms of Series Expan-

sions in Powers of Eccentricity

7
(Ib) Power Series Expansions up to e

(Eq 6-i to 6-ii)

(2a) Expansion of Powers of Sin M
(Eq 6-12 to 6-24)

(2b) Pascal' s Triangle and Its Modifi-
cation

(3a) General Forms of Fourier-Bessel

Expansion (Eq 6-25 to 6-36)

(3b) Expansions of Jn (he) (Eq 6-37)

7
(4) Fourier-Bessel Expansion up to e

(Eq 6-38 to 6-49) /,

'6

(5) Expansions for Near-C_cular
Orbits (Eq 6-50 to 6-61)

(6) Expansions in True Anomaly and

Eccentricity (Eq 6-62 to 6-76)

Hyperbolic Orbit Element Relations.

This table gives the basic parameters

for the hyperbola as follows:

(i) Hyperbolic Orbit Element Relations

Basic Constant Parameters (Eq
7-i to 7-56)

(2) Time Variant Hyperbolic Relations

(Eq 7-57 to 7-68)

Spherical Trigonometric Relations.

This auxiliary table expresses the re-

lationship between the various geometric
elements of the three-dimensional orbit.

An index to this table is found (next page),

Indexes to some of the tables follow.
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Index to Table 1 X 1 - f(X 2, X 3)

Index to Table 2

Pardi-'

eters If(E) f(r)

E 1
2_

r

v

%
i19 20

21"
22*

23*

28 30
31"

37 t 38
39
40*

41"

46 t 48
47

49*
50*

]_57 t 6263

2°o.59 61'I'
64*

61' 65*

X 1 -f(a, e, X 2)

_(r)f(v) _(y) f(o) f(_)

3 4 5 t 6 9
7
8

2*

12 * 13 t 14 t 16 18

15" 17
If*
15"

24 26 27 28
21. 22* 23*
25* 25*

32 33 34 35 36
31.

42 43 44 45'--

40* 41*

51 52 _ 53 56
49* 54

55
50*

66 67 # 68 69

64*
65*

0 771 72*717374 75 72*761e" 78 79 80 81 82 83

*Function of more than one time-dependent variable

tFigure available

See Note with Table 1

Index to Table 8

Para-

meters i

f(I, L)

(t,_)

(i,v)

(i,,)

(L, /_) 1

(L, v) 4

(L, _) 6

(& v) 7

(#, ,) 9

(.,¢) 1o

(t, Lo_)

(i, L, v)

(i, L,(p)

(i. f_. v)

f(I, _], Q)

(i,v,¢)

(L, _, v) 2

(L, #,,) 3

(L, v,¢) 5

(_, v,¢) 8

L

ii

14

16

17

19

20

12

13

15

18

21 31

34

24

26 36

37

27

29 39

40

30

32

22

23 33

35

25

28

38

See Note with Table 1

TABLE 1
T

ELliptic Orbit Element Relations

(see Fig. 4)

b

a"

_ b 2 _ h 2

P p(1 - e 2)

2 b 2r +
a
'2-F

a

2 b 2r +
= P

2-/
P

. ___£_P
g

1 -e

r
a

=

r

. P
"I -e

(Fig. 11)

(Fig. 12)

(Fig. 12)

¢

41

44

46

47

49

50

42

43

45

48

(1-1)

(_-2)

(1-3)

(i-4 )

(I-5)

(I-6)

(1-7)

III- 16



TABLE 1 (continued)

a =-_v (____eII - e

a

. . [l+e 

P

2
r

a

2r a - p

2
F

= P
TF -p

P

r r

_ a p
P

= P

v a (2_-_ - v a)

P

vp (2_-_ - vp)

r +r

a pz

}/ r
a

z

2
2_ - r a v a

I

1 _]ra2 2(r a Vp + Vp + 8_r a)
P

1 2
(rp v a + v a +P 8/Jrp)

/_rp

2_ - r v
P P

v v (Fig. 1)
a p

b=al-e 2

= _r a (2a- ra)

= _/r (2a - r )
P P

2_fpa 3/2 v a

2
/2+av

a

2_- a 3_2 Vp

,# + av 2
P

(1-8)

<1-9)

(1-1o)

(1-11)

(1-i la)

(i-12)

(1-13)

(i-14)

(1-15)

(1-16)

(i-17)

(1-18)

(I-19)

(1-20)

(1-21)

(1-22)

(1-23)

(I-24)

(1-25 )

III- 17

b - P (1-26)

_"_ e2

1 - e
= raCT-_ (1-27)

.]i+e
= rp _T--2- _ (i-28)

= A_ (1 - e) 3/2

2 /2v (i +e) 1
a

: P (1 + e)3/2

2 /2
Vp (i - e) 1

(i-29)

(1-30)

: railer:_ p (1-31)

= rp_ r P (1-32)
p=P

Cv (p.)3/2
= (1-33)

(2/a - Va_)a

=_-v (pp)3/2 (1-34)
p (2p - v a _'P)

a p

=I/ra 3 Va2
2

_2p - r a v a

= r_/Tv p [¢rL2 vp2+ 8pra_ r a Vp]

: P Va + 8prp - rp v a

_2/ rp3 2

v
= P

- 2
- r v

P P

= 2p

(v a + Vp) _Fa Vp

e: -

r
a

I -- - 1
a

r

= I_P
a

: fi_.A

(Fig. 11)

(Fig. 12)

(Fig. 12)

(i-35)

(i-36)

(I -37)

(1-38)

(1-39)

(1-40)

(I-41)

(i-42)

(1-43)

(i-44 )



e =

TABLE i (continued7

2
-av

a
2

/_+a v

2
a v -_

= P

P

r 2-b2
a

a

b2_r 2

= P

'b2+r 2

P

(i-45)

(I-467

(1-47)

(1-48)

(1-49)

z I -P____
r (I-50)

a

= ---P -1
r (1-51)

p

r r

p= a p
a

a

p a-U]

2b 2 r

= a

a

2b 2 r

_ P

= b2+r 2

P

r a (1 - e)

_- rp (1 +e)

a (1-52) =

= v _-P-- I (i-53)P

1_ _ l_
= a p v - v

+ V
a p Vp a

(1-54)

2
r v

= i - a a
(i-55)

1

= _-_ + rp v a -v a + (1-577

III- 18

r
a

2
r V

= P_P -i
(1-58)

h: _: 2_ (1-59)

b 2

a (I-60)

(I-61 )

(1-62)

(1-63)

= a (1 - e 2) (Fig. 11)

r
a

= _ (2a - ra)

r

P (2a
-_- - rp)

2r r

- a p

a p

2 2
r v

I St a

mc rp
2_ I 4p + rp Va2

2 2
r v

. P P
g

(I -63a)

(1-64 )

(I-65)

(1-66)

(1-67)

(1-68)

(1-69)

(I-707

(1-71)

( 1-727

( 1 - 73)

(1-74)

2 + 8_ra +rav 2 3Vp p (I-75)

va pJ (1~76)

(1-777

(1-78)

=a(l+e)

=a._£
r

P

(Fig. 12)

(1-79)

(I-8o)

(i-81)

(i-81a)



r

a

TABLE i (continued)

=2a-r
P

_ 2_a

_+a v a

2a 2 v 2
_ P

2
_+a v

P

=b__2
r

P

P

gl+

V
a

_ u (1+ e)2
2

v (i - e)
P

- rp p

P

pg--
a

2grp

+ ---2-
V

a

r

P
-2-

r v

= P_P
V a

F

E___
--uT_-- -I

_'2

r v

P P

2_

(1-82 )

(1-83)

(1-84)

(1-85)

(1-86)

(i -87)

(1-88)

(1-89)

(1-9o)

1-91)

(1-92)

(1-93)

(1-94)

(1-95)

(1-95a)

(1-96)

(i-97)

r

P
= a- _a2.b 2

= a(1 -e) (Fig. 12)

= P

=a_pp
r

a

= 2a-r
a

2a

1+--------2
a v

a

2a

- ,2-
a \r

i+ P

= b l-e

= P

b__ 2
F

a

P

1 - e

= r a

= . (1 - e) 2

v "2--(i+ e)

= _(l+e)
"2

V

P

Pr a

=-2F -p
a

v

P

2 2
r v
a a

2/a - r a v a

r 2

¢_____ 2#ra r a= + --"2---2-
V

P

2#

= Vp ( v a + Vp)

(1-98)

(1-99)

(1-1oo)

1-100a)

(i-I01)

1-102)

(i-i03)

(1-104)

( 1- lO5)

(1-106)

(1-107)

(1-108)

(1-109)

(1-110)

(1-111)

(1-112)

(I-113)

(1-114)

(I-115)

(1-116)
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V
a

TABLE 1 (continued)

,T _al _

/c;/-

=J__ /2a-r X

a

_ P

P

- f 2_b 2

-_/r a (b 2 + ra 2)

' 2/_r 3

2 (b2P+ rp2)

=_r_ (lr - e)
a

= /_ (1 - e) 2

P (i + e)

1 - e_-v
P

r

a

(1-117)

(1-118)

(1-119)

(1- 120)

( i- 120a)

(1-121)

(i-122)

(1-123)

(i-124)

(1-125)

(1-126)

(1-127)

(1-128)

(1-129)

(1-130)

(1-131)

(I-132)

III -20

V
a = 2_-_- Vp

jr 2#rPa ira + rp)

÷= + 2__E# _ v

r a

2
2_ - r v

_ P P

r v

P P

V
P

-i----_-

r a

rp

_
a v

a

_/_ _j e 2, (l+e_V_-=-r]

_ p-

• 3

./ 2p r a

='_b 2 (ra 2 + b 2)

'_r 2p b 2(r 2 + b 2)
P P

_4//_ (I + e) 2

-___/ra (i - e)

(I-133)

(I-134)

(I-135)

(1-136)

(I-137)

(1-138)

(I-139)

(1-140)

(1-140a)

(1-141)

(I-142)

(i-143)

( 1- 144)

(1-145)

(i-146)

(1-147)

(1-148)



V

P

E

TABLE 1 (continued)

(1 + e'_

_a kl-e/

r

P

r 2p r a
= , ,

P (r a + rp)

r v
= a a

y

P

2
2# - r v

a a

r v
a a

=¢__ 2# Va
+ _-" - -'2-

P

(1-149)

(1-150)

(1-151

(1-152

(1-153

(1-153a)

(1-154)

(1-155)

TABLE 2

Time Dependent Variables of Elliptic Orbits

(see Fig. 4)

-1 a-r
cos (a--_e r ) (2-1)

sin-l(r sin 0 _

, ig 13) (2-2)

-I
COS : 1....

L#e ±el#2 e2 -/_a (1-e2)_211/

(2-3)

-1
COS

-1
COS

¼/a- - A\av--_-_+ p] ] (2-4)

[1(± _1- (1 - e2) sec2 y)J(2-5)

('_1 e 2 sin O)= sin-I ; e co's 0 (Fig. 14) (2-6)

-lie+cos 0 1= cos L1+ e cos 0 (Fig. 14) (2-7)

E tan-i ,1 - e 1/2 ]

(2-8)

#a (1 - e2)] 1/4)]

a (I - e cos E) (2-10)

i 2 sin E (2-ii)
a - e

pa (1 - e 2)

# ± [#2 e2 _ #a (1 - e2) _2]1/2

2#a (Fig. 15)

av +#

= a II ± _/I - (i -12) see2 yl

= a (I - e 2) tan y

e sin 0

a (I - e 2)

1 + e cos 8
(Fig. i(;)

2F r

a _ rp)(r a + rp) + (r a
e6s O

(2-12)

(2-13)

(Fig. 17)

(2-14)

(2-15)

(2-16)

(Fig. 13)

(2-17)

(2-18)

2-a (1 -

=_/_- e sinEi - e cos E

[2ar - r 2
= ± 2

ar

=_/vv 2 #a (12 - e2)

r

= Ca (1 - e 2)tan

r

= r a(1.e 2

(2-19)

(2-20)

(2-21)

(2-22)

tan 0 (2-23)

= ±_ _av2 - (av24#a+_)2 (i -e 2)

= v sin ¥

(2-24)

(2-25)

III-21



r

TABLE 2 {continued)

la 1/2

= _: _ (1 - e 2) tan 2 ,/ (2-26)

[1±¢1- (1- e2)sec 2

= e (1 -e_ 2) sin 0 (2-27)

= .+ 2_0 1/2 P a (1-e 2

[pa (1 _ e2)]114 -a-

(2-28)

e (cos E - e) (2-29)
"--2
a (1 - e cos E) 3

t_ Ia, (1 -e2)-r1,

3
r

(2-30)

_te

-'2" cos 0 (2-31)
r

+ 2_ 1/2 I_e 2 - a (1 - e 2) i'21

±[_e2-a (1-e 2) r2]3/2l/_1/2 a 2 (1-e2)21

(2-32)

_av 2 +_)2 #av2

8_a 2 +U) (I - e 2) - 2gi(2_33 )

(1 - e2)- (1±¢ - (1 - e2)sec 2 ¥)I

a2 [1+_ - (1 - e2) sec2 ¥J 3

(2-34)

_e

a2(I_e2)2(1+e oosO)2cos0
(2-35)

(2-36)

f
td_ (1 + e cos E)
_a (1 e cos E)

(2-37)

(Figs. 1 (2-38)
and 15)

(2-39)

-- _a (1 - e 2) (Fig. 18) (2-40)
rcos y

,,4/_ (1 + 2e cos 0 + e 2) (2-41)
T r (1 + e cos 0)

t
p (l+e 2) ± 2 .[.e 2- a (1 - e 2)= "a (i -e '2)

(2-42)

- _ see 2 "111/2
I:F 11 - (1 - e 2) see 2

= _ e 2 .y (2-43)
1 ± ¥. (I )

1= /_ (1 + e 2 + 2e cos 0) i/2 (2-44)

a (1 - e2)"

1/2

2a61/2-E/aa(1-e2)_ 1/41
p 1/2 a[/,ta(1- e2)] 1/4

(2-45)

1/2

-lt/a 2 (1 - e 2)

= cos _r (2a - r) (Fig. 17) (2-47)

- rar p

= COS -
(r a + rp

(Fig. 17) (2-48)

o (Fig. 18) (2-49)

= tan-1 [(1 a(lr-e 2)) tan O] (2-50)

= ±tan-1 r [a (1 - e ),] (2-51)

1/2+[,e 2 -a (1-e2)r 2] 1/

tan-l(_l-e2) I 4_av2-(av2+p)2 (1-e2)]fl (2-52)
=:_ \ (av 2+/_) (1 - e 2)

(Fig. 19)

III-22



TABLE 2 (continued)

./°sin0 )tan -1
M+e cos 0 (Fig. 2O)

• -1
= Slrl

-I
= COS

= ± tan-1

- 1} 1/2

(2-53)

e sin @w.  7o7

:+;c2;2e 

{ 2a'_/2 [_la(1-e2_/4 -[pa(1-e 2)]a 2 (1 - e 2)

1/2

(2-56)

-1 {cos E -e_

= cos _l-e cos E] (Fig. 14) (2-57)

= 2 tan -I tan (Fig. 14)

(2-58)

(sinE l_-e2 _

= sin-1 \l-e cos E ] (Fig. 14) (2-59)

-1 (a[cosE el) (2-60)= COS

:sin-1 (a_Je-_ sinE) (2-61)

-1 [_a(1-e2)-r ]= cos (Figs. 12 & 13}
er

(2-62)

-I F2rar -r (r +r )'I

:cos [ PJ(Figs.,2&13)
(2-63)

=sin-1 [ a (1-e2) tan "(]er (2-64)

(l-e 2) - r

(2-65)

"6"

112

-1 {@ [a(l_e 2) t }= sin (2-66)

-i [(av2 +.)(I-e2)-2_ ]= cos 2_e (2-67) = +

[e'-{ }]-1 2
= cos cos ,/ - i ± cos ¥ os 2_-(1-e 2)

(Fig. 20) (2-68)

_1 [1 {fa3 __e2)3]1/4 1/2 }]
= cos 0 -1

(2-69)

1/2 e2) I/2
= {_.___ (1- (2-70)

ta / (l-e cos E) 2

= _a (i- e2)] 1/2

2 (2-71)
F

.= (1 +%COS O) (2-72)
F

[j ,1_o=,41 =t
= _ i -a

[,a3 (1_e2)3] 1/2 (2-73)

(aV2+;_) 2 [pa (l-e2)].
2 2

4/_ a

1/2

(2-74)

= [_a (1-e2)] 1/2
(2-75)

a2 [1_ ¢1- (1-e2) sec2 ¥] 2

=[aa __ J]i12(1_e2)3/ (1 + e cos 6) 2 (2-76)

1/2
u 2e (1-e 2) sin E

= - (2-77)
a-_ (l-e cos E) 4

(2-78)

=-2_ [a (1-e2)l'5/21ul/2

±[pe2 _a (l_e 2) _2] 1/2[ 3 (2-79)

= + ____ (l-e 2) [2_av 2 (l+e 2)
k 2pa J

_ (a2v 4 + 2) (1_e2)]} 1/2 (2-80)

2/_ (l-e 2) tan ,_

a 3 [1+_;- (1-e 2) sec2¥J 4
(2-81)

_ 2pe 3 (1 +e cos 0) 3 sin 6 (2-82)
3

a (l-e 2)

2 {_ 2/3 f

= + t2a(1-e2)'O 1/2 [Pa (1-e2)]1/4a (1-e 2)

2 I 1/2
-(1-e 2) [,a (1-e2_ 1/2 -a (l-e2) 2 _)'(2-83)

III-23



TABLE 3

Elliptic Orbital Elements in Terms of Rec-

tangular Position and Velocity Coordinates

2 2
a = (x 2 + y + z 2)

e =

L

P

r

v

x

-1/2

_ __1_<x2 +y2 + z 2)]

(3-1)

(3-2)

1 I . 21 - -_- xy - yx) + (xz - zx) 2

(yz- zy)2][2 (x2 +y2 +z2)-1/2- I_ (x 2

Y2 +z2)]} I/2 (3-3)

cos-1{(x_;/_i)[(x_-y_)2÷(x_-z_)2(yz-z_)2] (3-_

zr n

tan-i <YXn - XYnl (3-5)

=cot-I[_cos_-_-:sln_] (3-,)

- /2]= sin -I [z (x 2 +y2 + z 2) I (3-7)

_ 1 _x_- yx)2+(x_-z_)2+(yz- z})2]
(3-8)

Cx y2 2= 2 + + z (3-9)

=¢x '2 + _2 + ½2 (3-10)

-1

= r [cos (w + 6) cos _ -cos isin (co+_) sin 3f2j

(3-11)

= r [cos (w+ 6) sin f2 + cosisin (w+6) cos f_]

(3-12)

z = r sin ( w + 6) sin i (3-13)

= [cos _ (cos co cos _ - cos i sin _ sinw )X
L

Y

+ sin 6 (-sin co cos

] P (3-14)- cos i sin _ cos co) 1 + e cos 6

= [cos b (coscosin _ + cos i cos _ sin co)

+ sin % (-sin w sin

cos i cos f_ cos co)]+
J

P (3-15)
i + e cos 6

= [cos 6 sin i sin co

+ sin 0 sin i cos w) 1 + e cos @ (3-16)

x =_/_ Icos O + e) (-sin co cos _2

- cos i sin f_cos co ) (3-17)

- sin 6 (cos w cos f2 - cos i sin _ sin w)]

y =_p _cos 6 +e)(-sin _0 sinf2

+ cos i cos _ cos w)

- sin 8 (cos _ sin _q+ cos i cos flsin _)]

(3-18)

z =_--_ [(cos 6 +e)sini cos o_-sin6sin isin,,]
(3-19)

.f =sin -1 [(xx+yy+zz)(x2 +y2 + z2)-1/2 (x2

-1/2]+ y2 + z 2) (3-20)

0 = cos-1 [(XXp +yyp + ZZp) (x 2

-1/2 2 - /2]+y2 + z 2) (Xp 2 +yp + z 2) 1
p (3-21)

¢ = cos-I [(XXn + YYn + ZZn) (x2

-1/2 2 2) -1/2 ]+y2 + z 2) (Xn2 +Yn + Zn (3-22)

-i [ + YnYP + (Xn2w = cos (XnX p ZnZ p)

+yn 2 + Zn2)-1/2 (Xp2 +yp2 +Zp2) -1/2 ]

(3-23)

where:

n --node

p = perigee

= tan- 1 (3-24)

\xz - xz /

TABLE 4

Elliptic Orbital Elements in Terms of r, v, ,/

r

rv 2 (Fig. 15) (4-1)
2 -- --

r (Fig. 15) (4-2)
2-Q

2 2
- r COS "_

2p 1

rJ

= (r cos y)2
2

Q

(4-3)

(4-4)
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Q

r
a

r

P

V
a

V

P

K

_I Q (2 Q) cos 2= - - 'l (Fig. 19) (4-6)

_ i (r v cos y)2 (Fig. 18) (4-7)

= __Q cos 2
r Y (4-8)

(_._7_/2 rv2= =

c/ _ (Figs. 15 and 19) (4-9)

2 ____ + - 7 (_ -
(4-10)

= __Q + - Q (2 - Q) cos2"_ (4-11)

rV _ - _ (rVc°sy)2 (T --_--)

2 -- --

P (4-12)

rv cos y _ _)

(4-14)

v Ii_fl _Q (2 _ Q) cos2 y ] (4_15)_Q cos y

rv cos_ - _- (T- --_-)

(4-16)

= Qcos-cV [l+__Q(2_Q) cos2 j (4_17)

"FABLE 5

Miscellaneous Relations for Elliptic Orbits

= - 2--d--- (5-i)

(see Eqs 1-1 through 1-19 for parametric
variations of a)

=K+P

2
v _p

=_ r

2
V

(5-2)

5-3)

(5-4)

M = E - e sin E (Figs. 2 and 22a to i) (5-5)

n

P

r
m

V
C

V
e

0
m

(see Eqs 2-1 through 2-9 for parametric
variations of E)

2=

w (Fig. 7) (5-6)

= ¢_--a -3/2 (5-7)

(see Eqs 1-1 through 1-19 for parametric

variations of a)

M

=t-t (5-8)
P

= - _ (5-9)
r

= a (see Eqs 1-1 through 1-19 for parametric
variations of a)

(5-10)

_ M + t (5-11)
n p

3/2
_ a (E - e sin E) + t (5-12)

p
(see Eqs 2-1 through 2-9 for parametric
variations of E)

=_-_-- (Fig. 8) (5-13)

(see Eqs 2-10 through 2-18 for parametric
variations of r)

(5-14)

(5-15)

(see Eqs 2-10 through 2-18 for parametric
variations of r)

= sin -I (± e) (5-16)

(see Eqs 1-41 through 1-59 for parametric
variations of e)

tan -I (-_-) (5-17)

-1
cos (-e) (5-19)

= sin-1 (ba_ (5-20)

2 rr a ,,,,/_"- (Table 9and (5-21)
Fig. 1)

(see Eqs 1-1 through 1-19 for parametric
variations of a)
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TABLE 6-1a

General Forms of Series Expansions

in Powers of Eccentricity
(see Fig. 4)

E = M+ en d n-I
n=l _ dMn-- _ (sin n M)

(6-1)

sin E = n-I n-Ie d (sin n M)--ff-f
n=l dM

(6-2)

COS E = en-1 dn-2
n = 1 _ _ (sinn M)

(6-3)

(r) n dn -2
e

= I + _':_! _ (sin n M)
n=l

(6-4)

= 1 + e 2 + 2 # en dn-2

Lw n-T'. _ (sin n M)

n = 1 (6-5)

_, n d n
e

= 1 + _ d-_ (sinn M) (6-6)

n-I

x
en.i dn-2

= -e - _ _ (sln n M)
n = 1 (6-7)

y
a = _ _ _en'l dn-i (sin n M)

n ,, 1 dM-- (6-8)

sin O _ en-I dn-I= (sln n M)

n = I (n - i) ! dMn-I (6-9)

cos 8 n - 1 dn -2ne (sln n M) (6-10)

n=l

e = 4 e- dM (6-11)

NOTE: Divergence for e > 0.662743...
__E n

TABLE 6- lb

7
Power Series Expansions up to e

E

2
e

= M + e sinM+_--- sin2M
2_

3
+e___

22 '_32 sin 3M - 3 sin M)3

e 4 (4 3
+ ,.---/-/3-, sin 4M - 4.2 3 sin 2M) +

tconttnued)

TABLE 6- lb (continued)

5
e

(54 sin 5M - 5.34 sin 3M + 5.2 sin M)

6
+ e

.,2-7(6 5 sin 6M -6.45 sin 4M + 5-3.25 sin 2M)

7
+ e

(76 sin 7M - 7" 56 sin 5M

+ 7"3"36 sin 3M - 7.5 sin M)

+ ..... (Fig. 2)
(6-12)

sin E = sin M + _sin 2M

2
e

+ _ "(32 sin 3M -3 sin M)

3

+ e
(43 sin 4M - 4" 2 3 sin 2M)

4
+ e (54 sin 5M - 5- 34 sin 3M+ 5"2 sinM)

5_2"

5

+ e (65 sln6M .6.45 sin4M+5.3.25 sin2M)

e 6

+7.'2-7 (76 sin 7M - 7" 56 sin 5M

+ 7-3.36 sin 3M - 7.5 sinM)

7
+ e

(87 sin 8M - 8"6 7 sin 6M

+ 7"4"47 sin 4M - 8"7.27 sin 2M)

+ ..... (6-13)

cOS E = cos M +_ (Cos 2M - I)

e2
+ _ (3 cos 3M -3 cos M)

212 _

3
e

+3,--P
e 4

5
e

+

(42 cos 4M -4.22 cos 2M)

(53 cos 5M- 5" 33 cos 3M + 5" 2 cos M)

(64 cos 6M -6"44 cos 4M + 5-3.24 cos 2M)

(continued)
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TABLE 6-1b (continued)

8
+ e

(75 cos 7M - 7" 55 cos 5M

+ 7-3.3 5 cos 3M -7"5 cos M)

7

e cos 6M
+ _ (8 6 cos 8M - 8"8 6

+ 7"4"46 cos 4M - 8"7'26 cos 2M)

+
..... (6-14)

= M+2 e sinM+ 5_ sin2M

3

e (13 sin 3M - 3 sin M)+1-'2-

4
e

+g-ff (103 sin 4M -44 sin 2M)

5
e

+ 9-_0 (1097 sin 5M - 845 sin 3M + 50 stnM)

6

+ e (1223 sin 6M - 902 sin 4M + 85 sin 2M)gB-o

7

+ e,r_.-,r_ (47,273 sin 7M - 41,699 sin 5M

+ 5985 sin 3M + 749 cos M)

+ ....
(6-15)

sin 0 =
_Isin M + sin 2M

e

2

(32 sin 3M - 3 sin M)e

e 3 , 2 3
+ _ _4 3 sin 4M - 4" sin 2M)

4
e

+ _ -(5 4 sin 5M - 5"3 4 sin 3M + 5"2 sin M)

5
e

+ _ (6 5 sin 6M - 6"4 5 sin 4M + 5"3"2 5 sin 2M)

6
e , 5 6

+ _ _78 sin 7M - 7" sin 5M

+ 7" 3" 36 sin 3M - 7-5 sin M)

7
e - 7

+ _ (87 sin 8M - 8"6 sin 8M

+ 7"4"47 sin 4M - 8"72 sin M)

(6- 16)

COS 0 =

+

TABLE 6-1b (continued)

cos M

3e 2

4e 3

5 e 4

+ 5-2 cos M)

+ 6 e 5 (64 cos 6M -6'44 cos 4M

5! 2_

+ 5"3"2 4 cos 2M)

7 e 6 (7 5 cos 7M - 7" 5 5 cos 5M

+ 7"3'3 5 cos 3M- 7'5 cos M)

8e 7

I- _ (86 cos 8M - 8"6 6 cos 6M

+ 7"4"4 6 cos 4M - 8"7"2 6 cos 2M)

+ ..... {6-17)

+ e (cos 2M - 1)

(3 cos 3M -3 cos M)

(42 cos 4M - 4" 22 cos 2M)

(53 cos 5M - 5.33 cos 3M

2

r ffi i -e cos M - ew-- (cos 2M - I)
a

3
e

" 2[--_-2 (3 cos 3M-3 cos M)

4
e

5
e

8
e

(42 cos 4M - 4" 22 cos 2M)

(53 cos 5M - 5"33 cos 3M + 5"2 cos M)

(6 a cos 6M- 6"44 cos 4M

+ 5" 3.24 cos 2M)

7
e 55

-8.f-_2 (75 cos 7M - 7- cos 5M

+ 7"3'35 cos 3M - 7.5 cos M)

(6-18)
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TABLE 6-1b (continued)

2

= 1 - 2 e cos M e (cos 2M - 3)"gr-.

3
e

" gT'-ff- (3 cos aM - 3 cos M)

4
e

-_ (4 2 cos 4M - 4.2 2 cos 2M)

5
e

5( 2"_'- (53 cos 5M

- 5" 33 coS 3M + 5"2 cos M)

6
e

6' 2-4- (64 cos 6M

-6"44 cos 4M + 5"3"24 cos 2M)

7
e

- _ (7 5 cos 7M - 7"5 5 cos 5M

+ 7"3"35 cos 3M - 7-5 cos M)

a e 2-- = 1 + e cos M + cos 2M
r

3
e

+ _ "(33 cos 3M - 3 cos M)
32 _

4
e

+ _ (44 cos 4M - 4-24 cos 2M)

5
e

+ _ (55 cos 5M - 5.35 cos 3M

+ 5.2 cos M)

6
e

+ _ (6 6 cos 6M -6'4 6 cos 4M

+ 5"3"26 cos 2M)

7
e

+_ (77 cos 7M - 7.57 cos 5M

+ 7"3"37 cos 3M - 7.5 cos M)

+

2

= I + 2 e cos M +_ (5 cos 2M + 1)

3

+ e--r (13 cos 3M + 3 cos M)
"t

(5-19)

(_;-20)

]'ABLE 6-1b (continued)

4
e

+ _ (103 cos 4M + 8 cos 2M + 9)

5
e

+ _ (1097 cos 5M - 75 cos 3M + 130 cos M)

0
e

+ _ (1223 cos 6M - 258 cos 4M

+ 105 cos 2M + 50)

7
e

+ 2-37-4--0- (236,365 cos 7M

- 83,105 cos 5M + 17,685 cos 3M

+ 13,375 cos M)

(6-2])

x_- = -e +cos M + (cos 2M - 1)

2
e

+ _(3 cos 3M - 3 cos M)

3
e

+ _ (4 2 cos 4M - 4" 2 2 cos 2M)

e 4
+ _ "(53 cos 5M - 5" 33 cos 3M + 5"2 cos M)

4! 2 4

5
e

+ _ (64 cos 6M -6"44 cos 4M

+ 5" 3-24 cos 2M)

+

6

e (75 cos 7M 7" 55
6i 2 _- - cos 5M

7"3"35 cos 3M - 7-5 cos M)

e 7 (86
+ _ cos 8M - 8.66 cos 6M

+ 7"4"46 cos 4M - 8-7.26 cos 2M)

+
(6-22)

a = _ i sin M + _-sin 2M

2
4- e

"(32 sin 3M - 3 sin M) +

(continued)
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]'ABLE 6-1b (continued) TABLE 6-1b (continued)

3
e

+ _ (43 sin 4M - 4-23sin 2M)

4
e

+ _ "(54 sin 5M - 5-34 sin 3M + 5"2 sin M)

5
e

+ _ (65 sin 6M - 6" 45 sin 4M6_

+ 5"3"25 sin 2M)

6
e , 56+ _ t76 sin 7M - 7" sin 5M

7,2

+ 7"3-36 sin 3M - 7-5 sin M)

7
e

+ _. 2_ (87 sin 8M - 8"6 7 sin 6M

+ 7.4.47 sin 4M- 3-7-27 sin 2M)

+ ..... } (6 -23)

sin 2 M

sin 3 M

sin 4 M

sin 5 M

sin 6 M

sin 7 M

• 8
sm M

9
sin M

sin I0 M

sin II M

• 12
sm M

sin 13 M

__e 2

2 4 6
e e 1"3e

= 1"2. --Y:_" -2-:-4:-g

8
1.3-5 e

" 2';4-6-8 ' ' "

2 4 6 8
e e e 5e

= 1--'2-''_--"T_-- 1--2-8--

7 e 10 21 e 12

" 23g--- " 10--U2T- -- • • (6-24)

TABLE 6-2a

Expansions of Powers of Sin M

1

= _-(1 - cos 2M)

= _(3 sin M - sin 3M)

(3 - 4 cos 2M + cos 4M)

(10 sin M - 5 sin 3M + sin 5M)

= _2 (10 - 15 cos 2M + 6 cos 4M -cos 6M)

& (35 sin M - 21 sin 3M + 7 sin 5M - sin 7M)

1
= _ (35 - 56 cos 2M + 28 cos 4M - 8 cos 6M + cos 8M)

1
= g]SB- (126 sin M - 84 sin 3M + 36 sin 5M - 9 sin 7M + sin 9M)

1

= 51---_ (126 -210 cos 2M+ 120 cos 4M -45 cos 6M + 10 cos 8M -cos 10M)

1

= _(462 sin M - 330 sin 3M + 165 sin 5M - 55 sin 7M + 11 sin 9M - sin llM)

1 (462 - 792 cos 2M + 495 cos 4M - 220 cos 6M + 66 cos 8M - 12 cos 10M + cos 12M)
= 2-6Xg

= 1 (1716 sin M - 1287 sin 3M + 715 sin 5M - 286 sin 7M + 78 sin 9M - 13 sin IIM + sin 13M)
4096

NOTE:

The numerical coefficients are easily obtained from the Pascal' s triangle (cut in half), as shown in Table 6-2b.
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TABLE 6-2b

Pascal's Triangle and its Modification

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 I

1 6 15 20 15 6 1

1 7 21 35 (35) (21) 7 i

1 8 28 56 70 (56) 28 8 1

Note: In the Pascal's triangle, each term is the

sum of the two terms immediately above it (e. g. 0

35 + 21 = 56). The coefficients for the expansions

of sinnM in Table 6-2a result if the Pascal' s

triangle is cut in half as shown below.

n]0

1

2

3

4

5

6

7

8

The Coefficients of Expansion of sin n M

1
T

10

35

1

1

3

10

35

4

5

15

21

56

1

1

28

1

1

8

TABLE 6-3a

General Forms of Fourier-Bessel Expansion

(see any reference on celestial mechanics,

e.g., Smart)

J (ne) sin n M (6-25)
1

E - M+2 _" n

n=l

_. 1 j (ne) sin n M (6-26)
2

sinE= _- _" n

n=l

1
cos E =-_- e

Jn (ne) cos n M

n=l (6-27)

0 ', M +_

n=l

where

9rca

n2 sin nM _ f Inl Jn+k (ne)

k,, -_ (6 -28)

f ,, I-4-e2 =

e

sin -2
n-1

2 (i - e 2)
cos8 = -e +

e

a'r = I+_---2 e "-2
n

n=l

3 5 7

% e 5e+ + I_- + -I2_ +...
(6-29)

_" _ 'I n

(6-30)

Jn (ne) cos n M

n=l (6-31)

d I (ne)}cos n MJn

(6-32)

= I+-, r- - 4
n

n=l

ar = 1 + 2 _ Jn (ne) cos nM

n=l

Jn (ne) cos n M

(6-33}

(6 -34)

_" =--2- + 2 -2- _ Jn (ne) cos n M

n=l n (6-35)

= e-2 1._-_e2 _ n'l J (ne)sinnMn (6-36)

n=l

Note: Divergence for e > 0.662743 . . .
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TABLE 6-3b

Expansions of J (ne)
n

n+2k
X

Jn (x) = (-l)k 2n+2k k! (n + k)!

k=o

3 5 7
e e e e

Jl (e) = _- - i--6-+ _gT - _ +. • •

e 2 4 6 e 8

J 2 (2e)= _- -_-+_ "7"21Y +' ' "

9 e 3 81 e 5 729 e 7

J3 (3e) = "1"5'-" "-_Sg-- + _ "" ""

2 e 4 8 e 6 8 e 8

J4 (4e) = --Y--"-gb'- + _ ....

625 e 5 15,625 e 7

J5(5e) = _ - 18,432 + " ' "

81 e 6 729 e 8

J6 (6e) = --gg--- " -_--0 -+" " "

7

J7(7e) = ,117,649 e .92,160 " " "

8
512 e

J8(Se) = -._ ....

' 1 3 e 2 5p4 7 e 6

Jl (e) = +_ -F'--I_ i-gT4-f2 +" " •

3 5 7
w 2e e e

J2(2e) = e "-3"---- + 'if- "gO" +" " '

i

J3(3e) = 27 e 2 405 e 4 5103 e 6--ig- - ---g5-6---+ _ -.. •

f 8 e 3 e 5 64e v
j4 (4e) = 16-'3 "5 + --45- " " " '

s 3125 e 4 109,375 o 6

J5 (5e) = _ 18,432 +" " "

I 243e 5 729 e 7

J6 (6e) = _ - ---,7-0---- +. • •

6
' 823,543 e

J7 (7e) - 92,160

7
r

Js(Se) = _ -...

(6-37)

TABLE 6-4

7
Fourier-Bessel Expansions up to e

3 5 7

E = M +(e -_ +e e1-912-"-ffTF6-- +

e e 4 6+ ,7" --if- + _ - . . . sin 2M)

-g--- "T2W-- + " "

(¢ G )+ - + . . sin 4M

6

+(_-- .... ) stn6M

16,807 e 7 )
+ \ 4"6,-_d sin 7M +

• ) sin M

.)

sin 5M

sin 3M

(6-38)

sinE = ( _ e4 e 6 )1- + 1-_ "-figS+"" sin M

3 5 7

243e0
+ _--_ " i-'_-I_--+ _ .... ) sin 3M

(_ 4e5 4@ )+ " "TS-- + - ... sin 4M

( 125e4 _+ .) sin 5M+ \---lgl- - ''

+(2_ . 24@+...)sin6M

+(16, 807e6 _ )46,080 " " "
sin 7M[

7 )+ (_ .... sin 8M + ..... (6-39)

e
cos E = - _-

Z

_.e.2 5 e 4 7 e 61- + -IgT " -g_6

3 5 7

+(e __ e eT " + l'g" " fl_O

+ .. ,) cos M

., .) cos 2M

(continued)
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TABLE8-4 (continued

" -Igg"-+ -b'T2]3--"" • cos 3M

( e3 2e5 8e7 )+ _-- " --b'-" + "-45"-- "'' • cos 4M

+(125e4 43_+ )cos 5M

)
46, 08{J - ... cos 7M

(128 e7 )+ \_ - ... cos 8M + ..... (6-40)

e 107 e
0 ,, M+ 2e --4-+ +-_g--- + ... sinM

(-_ 2 11 e4 17e6 )+ - _ + _ - ... sin 2M

+ "-'r9-2- + - ... ) sin 3M

+[103 e 4 451 e 6 )\ -gg-'- " _ + "'" sin 4M

+(_ .595_+...)sln5M

+ (122_ ,...)sin6M

//47, 273 e 7 )+ \ 32,256 - ... sin 7M + ..... (6-41)

( 7_ 17e4 __ 6 )sin 0 ,, 1 - +_ - +... sin M

+ 4

+ -1-5,- _+ - . .. sin 4M

+(62_ 29,363 e 6 )" 9_i6' + ... sin 5M

/117,649 e 6 )+ \ 48,080 -... sin 7M

.+(_7 -,,,) sin 8M + ..... (6-42)

TABLE 6-4 (continued)

cos 0 =-e + (1--9_ 2

25e4 49e6 1 I 43___3+---Ii$_ _-ij_l _ + ... cos M + e-

+@ -_+ ...)cos 2M

(_ -2 225e4 3969e6 )+ -_ + _- ... cos 3M

+(_,2_ -3 12e5+6--_- .. )cos4M

" 921'6 ' + ... cos 5M

+ (_y_5 -_7+...)cos 6M

+ ( 117,649 e 646,080 -...) cos 7M

+ (_7....) cos 8M+ ..... (6-43)

2 ( 3e 3r 1+_ - e-_" = W-

+_ - 9-2T6 +... cos M -

e- + l'_ - "'' cos 2M

(3@ 45e 5 567e 7 .) cos 3M- 1-rgg-" + -ffr2"O- -'"

(_ 2e6- - ._b.__ + ...
cos 4M

(_ 4375e7 )- - _ + .. cos 5M

/cos0 
....

e

=i+ - 2e --_--

e e+ -4-3"0"_ + "' " cos M - '2"- - -6"-

e6 )+ _ - ... cos 2M + (continued)
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TABLE 6-4 (continued) TABLE 6-4 (continued)

+ - "-6-4-- +_" -''' cos 3M

4

+(%__2e0 4M
+ . . . _ cos

+ _ _ +... cos 5M

(¢ 81e8 + ) cos 6M+ - _ ''"

..... (6-45)

a
_ =
r

( e1+ e - + l-W2"

7
e

- gg'N-
+ . . . e 4 6) o ecosM+ - -'3-+ '2"4"

• . . ) cos 2M

9e 81e5 729e7 .) cos 3M+ -g'- - 1-P2"ff- + _-_'2-ff" -""

(4__ 16e6 + ) cos4M+ -_ ...

+ (62_- 15'625e79216- +''') cos 5M

 0,000-- ......

+ + _ + +_

+ . . . ) cos M

+ + _3- + + ... cos 2M

(I_ 25e5393e7 )+ - _ + _ - ... cos 3M

+ (continued)

(10__@ 129e 6 )+ . _ + ... COS
4M

0_ 16, 621e7+ ---'4g-gg_

+ ...)cos 5M + (121@ -...)cos 6M

273e 7(47,
X

) cos 7M + (6-47)
+ X 4608 .... ''' _ ' ....

_=3e(@ 5e47e6a _ + 1 - +_ - _2"i"_

+... cos M+ _ ---_

7 )+ e e + cos 2M
_-_ ...

+(3e245e 4 567e 6 )-_ " 1-rgg- +WIgW-"" cos aM

(e 3 2e5 + 8e7 - ) cos 4M
+ _ -_ -_ ...

+ - _ "'"

)(8_ 81e_ + COS 6M+ - "-f-4-O-- "''

(16,807e 6 ) cos 7M
+ \ 46,080 .... "'"

+ (_ -...)cos 8M+ ..... (6-48)

_Y
a

5e 2 lle4 457e6 ) sin M1 -W - _-Tgg---g2-f_-'"

(e 5e3 e 5 e 7 )+ _- -'T'2- + g'4- - _ + ''' sin 2M

(@ 51 e4543e6 ) sin 3M+ - TZ_ + _X_l---.--

+ -_ + '- ... sin 4M

)+ - _ + ... sin 5M

(2_ 135e7 + )sin6M ++ --_-- ...

(continued)
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TABLE 6-4 (continued) TABLE 6-6 (continued)

16,807e 6 1+ \ 46,080 - ... sin 7M

( 128e7 Isin 8M+ .....+ _ - ...
(6-49)

TABLE 6-5

Expansions for Near-Circular Orbit (e 2 < < I)

E = M + e sin M + ... (6-50)

sin E = sin M + _ sin 2M + . .. (6-51)

cosE = - _- + cos M + {- cos 2M+... (6-52)

6 = M + 2e sinM + ... (6-53)

sin e = sin M + e sin 2M + ... (6-54)

cos 8 = -e + cos M + e cos 2M + ... (6-55)

r) = 1 -e cos M - ... (6-56)

(_)2 = 1-2e cos M -... (6-57)

(a) = l+ecosM+... (6-5a)

ra) 2 = 1 + 2e cos M + ... (6-59)

x 3e

a z
+ cos M + _ cos 2 M + ...(6-60)

$_
a

= sin M + _ sin 2 M + .... (6-61)

TABLE 6-b

Expansions in True Anomaly and Eccentricity

2

E = 0 - e sin e +_- sin 26

3

e 0)4 in e + sin 3 + ... (6-62)

2

e e (sin 0 - sin 36)
sin E = sin 8 -_ sin 26 --_-

3
e

--6- sin 46 - ... (6-63)

cos E
e

= cos e +_ (i - cos 26)

2 3

-_l--(cos 6-cos 30)+_- (6-64)

2
COS e (cos 0 - cos 38)E = cos 2 e +_

2

o(-+-_-- 2 cos 2e + cos 48 +

3

+ _- (3 cos 3e - cos 5e)
0

(6-65)

M

r

= O - 2e sin 0 + _e 2 sin 20

1 3
-_ e sin 30 + ...

2

= 1 - e cos O -_- (1 - cos 20)

3

-_- (cos 30 - cos O) -
p • #

(6-66)

(6-67)

a

r

: I + e cos 0 + e 2 + e 3 cos E)

2

=_-_ e (1 +_- + ...)sin 6

(6-68)

(6- 69)

r"

F
=_ e cos 6 I1 + 2e cos 0

&.
a

2

e (cos 2e + 5)+-_-

+ 4e 3 cos 0 + ...] (7-70)

2

v -_ [I +e cos e+_- (3-cos 28)

3 "I

+_ (4ooso - co_ 3e- 7)+ ...J (6-7,)
2 3

= e sin O - _-- sin 26 +_-- sin 36Y

4
e

" -4-- sin 40 + . .. (6-72)

sin _/ = e sin 0 - sin 28 + (sin 38 - 3 sin 9)

1 4
--_ e (sin 48 - 2 sin 26) + ... (6-73)

2 3

__ e (cos 30 + 7) + . . .cos X = 1+ (cos 2e- 1)+-8-

(6-74)

2

e = _a_ [1 +2e cos O+_-- (4+cos 20)

+ 3e 3 cos e + .../ (6-75)
J
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b

TABLE 6-6 (continued)

"--_- e sine [l+3ecos 8
a

+g{3 +cos 20) +...]

TABLE 7-1

Hyperbolic Orbit Element Relations
(see Fig. 6)

b
I

. b2
p

b2_r 2
= P

2r
P

L
"-2-

e - 1

r
p

(1 + e)
2

v (e - I)
P

2
r

p
=

p-2-_
P

Vp (Vp- 2_)

#rp
2

r v - 2t_
p p

= a_e2 . 1

= Crp (rp + 2a)

= 2 _-a 3/2 vp
2

av -pp

(6-76)

(7-i)

(7-2)

(7-3)

(7-4)

(7-5)

(7-6)

(7-7)

(7-8)

(7-9)

(7-10)

(7-11)

(7-12)

(7-13)

(7-14)

TABLE 7-I (continued)

b,, rp_

. # (e + 1) 3/2

2 1)1/2
Vp (e-

J p
= r _p ,

p 2rp

. 1 pP

Vp - __
v

p

= r

p _r r
Vp

v - 2_
p p

(7-15)

(7-16)

(7-17)

(7-18)

(7-19)

r

= -2+1
a

2
av +_

= P
2

aVp -P

= +1

b2+r 2

= P2
b 2 - r

P

= P-- -1
r

p

= _ Vp - 1

2
r v

= -2--_K__ - 1

(7-20)

(7-21)

(7-22)

(7-23)

(7-24)

(7-25)

(7-26)

(7-27)

(7-28)

b 2
p m --

a

= a (e 2 - 1)

r

= a-p-(rp + 2a)

(7-29)

(7-30)

(7-31)

(7-32)
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TABLE 7-I (continued)

p,, bCJ-i

2r b 2
P

w __-r2.b--g_ r
P

= r (e+l)
P

= . \_p /

2 2
r v

= P P

rp= Cj+b2-a

= a(e- 1)

)= a +P -I

_ 2p a
2

aVp - /_

_-i= b ¥I

= P
l+e

= p (l+e)
2

V

P

V

P

V =

P _32 b 2+ - a

=4//_ (e + 1) 3/2

(e- 1) 112

(7-33)

(7-34)

(7-35)

(7-36)
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(7-38)
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(7-40)

(7-41)

(7-42)

(7-43)

(7-44)

(7-45)

(7-46)

(7-47)

(7-48)

(7-49)

(7-50)

(7-51)
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TABLE 7-1 (continued)

.i p¢_7

b (_/b_+p 2 - b)

2pb 2

= _r (b2 - rp 2)
P

= _"-- (1 + e)
In p

= u (1 + e)
P

r

P

(7-52)

(7-53)

(7-54)

(7-55)

(7-56)

TABLE 7-2

Time Variant Hyperbolic Relations

(see Fig. 6)

Elements

pr
a -

- 2
rv - 2p

3____ c°s2 Yb = ....

-- rv - 2p

e =

p =

r m

P

_1 " 2+-_ rv eos2_/ (rv 2 - 2_)

2 2 2
r V COS Y

i --_ ,2,2 _r + rv
rv - 2p

Vp rv cos 7

(7-57)

(7-58)

(7-59)

(7-60)

2
cos "y (rv 2 - 2t_)

(7-61)

)cos y(rv 2 - 2,u)

(7-62)

Time variants

F = iE

: +
= 2 tanh LYe + 1

(7-63)

r = P
I + e cos 0

t =

(7-63a)

tan _2-] (7-63b)

(7-64)

r Ce 2 r 2
- (p - r) 2 +
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TABLE 7-2 (continued) TABLE 8 (continued)

er

= - F + e sinh F

;p7 i [ e sin O= _ I + e cos 0

( e +cOs 6 +¢21+ e cos 0 - 1 sin e)]

1
in

I/ -1

+tp (7-658)

+t
P

(7-65b)

='_/_ [i + 2e cos @ +e 2]

.)e - 1

1:7 (7 -66a)

(7-66b)

(7-67)

1 + e cos 0

+ 2e cos O + e

= c°s-I (Pe_)

(7 -68)

(7-69)

"FABLE 8_

Spherical Trigonometrle Relations

-i
= cos (cos L sin _)

/sin L sin _)
= sin-1 k sin v

/

( tan L _)= tan-1 \sin 6 sin

= tan-1 \sn--{-n--K'/

-1 /cos L sin v)= COS \ sin dp

= sin -1 tstn___L}

\sin ¢ /

sin-1 \cos v/

(co.  .tan _,)=tan-1 \ sin V

(8-1)

(8-2)

(8-3)

(8-4)

(8-5)

(8-6)

(8-7)

(8-8)

doot H
i " tan -1 kco-US-_/

-1 /tan v_

(8-9)

(8-1o)

L I COS -I

,,sin -I

= tan- i

= tan -I

= tan- i

= sin -I

= sln -I

sin -I

= tan- 1

-I
= COS

= sin -I

= sin -I

-i
= COS

-I
COS

-1
= COS

= tan -I

" tan- 1

= sin -I

-I
z COS

-I
= sin
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= sin -1
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cos i_

sin i sin

sin '_ ]

(tan i sin /3 sin ¢)

(tan i sin v)
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(sin i sin ¢)

cos _ sin\- _;-*)

(cos $ tan ¢)

COS Is/

(8-11)

(8-12)
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--/

sin i cos
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tan i sin
\ _n'_ _t

/
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/

os L tan
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(8-21)

(8-22)
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TABLE 8 (continued)

-1
= COS

-I
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-I
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= sln -I

cos $_
\_-rffv/
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Fig. 3. Three-Dimensional Geometry o£ the Orbit
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B I vI,.,_ ..........l_l_od 1.4e2 1.4e4

_ _ A_.VI,. ,._ 4._4
V$|_it_ 7.713 7.710
]Psrt_d I._le ,.81e

AmL Vel. ,*. 144 _. 140

Psrtod 1,550 I._52

/_I. Vel. 4.0_3 4.04S

l Veloc_ 7.601 ?. 59_

A_L Vel. 3.966 3.961

V*loe/tT ?.546 7,543

Plrlod 1.61_ 1.621
_. Vii. _.Be_ ,1.877

Vol_ity ?,493 7.'90Perto_ _. 6_4 _, 656

Vslo_lt? 7.44_ 7.43SPertod _ ,689 _,69_

l_r'[ad i 7Z.t iE E

AmL VII. _.644 _.640

l_rLod _. ?_,o I. 762

A nl. VII. 3.570 ].567

Plrlod I. ?'_6 1.79?

A_L V_. _.49_ _.496

F,ertod _ ._3_. I .e33
A_, VII. 3.*_o 3.42?

Ve)oei_7 % _ 9_ ?. _ 93plrtod i. sc_ _.e?o

An&. VoL 3.3_4 3.3_

VIIoett,/ 7. l_9 7.146P_r'led i. _04 _. 90_

Vlloefl7 ?. ,c,3 ?. IO_Pel4od _.s,*l 1.94_

Velocity ?.o_ 7.056Psrtod 1.97e i. 900

_ _r/o_ ,_.o,_ _.o,,Aas. Yel. 3.1_e _._15

Vi|o¢l_ 6.972 6.9?0
Pertod 2.o53 2.0SS

Anl. Y_4. 3.061 3.0_8

Period 2. 090 2. 092

_um_. Vel. _. oob 3. 003

Yel_lt_ 6.889 6.ee7
_* V@l 2.9_2 2.9S0

Velocity 6.8'.,8 6.1346Psr/od 2.166 2._6l

An&. VII. 2. _00 2. *'gS

Yel,_[t_ 6. S08 6. _06

I _I_od 2 205 2. 207
AmE. vld. 2. 850 2.147

Y@|'_7 6. 769 6.7_7l_dcd 2.2.,,1 2. 245

i V4_O_ 6.73D 6o 72@_r/od _.282 2.281

AI_. VII. 2.753 2.7'_ I

i VelOCity 6.692 6.690l_rlod 2. _21 2. 323

A_. VII. 2.7o? 2. 705

TABLE 9

Circular Velocity, Period and Angular Rate

(metric data; see Figs. 7 and 8 for _nglish data)

II. IS N. _1_. M,. _. ,S.

_._44 e.i.*1 8.1_? e._34 e. 13o _.127 _.i74
i...e*, 1.29o i....91 1.29z _._94 1.296 I._96

4.e78 4.672 4.666 4.e_o 4.,B_4 4.646 4.84.?.

e.o77 e.o74 _..o7o e.o67 8. o64 e.o61 e.o_7
1.32o 1.3_.2 _.]24 1.375 I..327 1.326 l.Z3o
_..759 4.75.3 4._? 4.?,,i 4.736 4.73o 4.7z*

_.o12 E,.ooe 8.oo5 8.oo2 ?.999 7.996 ?.99_.
i. 353 1.354 1.356 1 ..356 _.z59 t. 36t I. z63

,,.644 4.6_9 _*.63s 4.626 4.622 4.617 4.*_11

l. Je6 1.3_37 i._69 I._91 _.39. _ 1.3_4 1.396

4._34 4._z9 4._24 ,,.516 4._13 4.5oe *._o._

7.e66 7.se_ 7.66o 7.e76 ?.e73 ?.e?o ?._67
1.419 1.42o i .422 1 ..*24 1.4z_ i._x7 1.4_.s

4.429 ,,.424 4.4_e ,*.41) 4._*oe 4.4c, z 4.sse

?.62'5 ?.622 ?.619 ?.616 7. e13 ?.eln ?.eo?
1.4_2 1.4_* _.4_ 1.4's? t.is9 I.,6o I.,,s2

4. z27 4.322 4._i? 4.312 4.3o7 .*._o2 4._?

?.76_ ?.763 7.76o ?.?5? 7.754 ?.,'_I 7.?_

1.466 1.467 1.469 1.491 1.49_ I._,s4 i..,96
*.22s ,_.22_ 4.22o 4.21_ _.21o 4.zo_ 4.;.oi

1.7o? ?.?o_ ?.?o2 ?._99 ?.696 ?.6s_ ?._.9o
_.s19 1.521 I.,_23 _._25 1.526 I._;._ _.5_o

,,._3_ 4._3_ 4.126 4._21 ,.117 4.112 *._o8

4.o44 4.o40 4.o3_ 4.o_ 4.o27 4.oz± ,.,:,_-

?.59'_ ?.592 ?._o ?._e? ?.'5_4 ?._ 7..:7_

?.541 7._ze ?._._ ?._3_ ?._30 ?.'s..? _._2s
1.622 1.624 1.62_ 1.626 1.6_ _._71 i.,_33

7.467 7.465 ?.462 7.4eo ?.47? ?._ 7.,*?2
1.657 1.659 I.C_6_ i._6z 1.6c_, i._,_ i._6_

3.?s,_ 3.767 3.?e_ s.??9 _.77.5 3.771 s.?_?

?.43_ ?.43.3 7.4_o 7.426 ?.42'_ 7.42z ?.4_o
h69Z t.694 _.696 1.696 i._g9 1.7oi I.?03
.3.713 Z.709 Z.70_ ._-?0_ ).6(_7 Z.6_Z S._B9

?.364 ?.362 ?.3?9 7.3?? ?._74 ?.z7; ?.369

1.728 _.7.3o 1.731 1.733 _.735 1.757 t.?3B
3.6z? 3.633 _.629 z.6_5 3.622 3.6_ 3.6_4

?.3_,, ?._32 ?.329 ?.327 ?.s24 _'.z_2 ?.32o
1.763 _.76_ 1.767 1.769 _.??o 1.772 1.77,,
3.563 3.56o 3.s56 _._2 3.549 z._4_ .%542

_. _s .I*. 2s _o _ a0

7.265 ?._63 7.z8o ?.2?£ ?.._7,; 7...7_ ?.:_i

3.492 z. Ie_ ._.46_ s._e2 _.._?_. _.,7'_ _._7_

?.23? 7.-_'_ ?.zz_ 7.2_o 7...z_ ?.2:_ ;....._
_.83_ _.e_? I.e_ i._,I _.e,._ ¸ I._ _._,_

3.424 ._.4._o s.,17 _._14 s.*1o _._c? _._,_

7.19o ?.lee ?.186 7.,is 7._i ".I_ '

3.3_? z._,_ s._51 3.3, _. _._, _._4_

?.144 ?.142 7._z9 ?.i?? 7._'_ 7._3s

i._oe 1.91o i._i? 1.9_4 I._i-_ _.9_7
s.2_s3 -%2_o 3.;.87 :_.2_* _.26o s.;77

?.o99 7.._,;.7 ?.o_* ?.o_: ?.o_o 7.r:_
,._s4'_ 1.947 i._46 h_:O _._._ _._4

?.0'_, 7.052 ?.050 7.o._e 7.04_ ?.c,*s

?.011 7.00_ ?.OO6 ?.OO4 ?.OO2 ?.000
2.0t9 Z.OZl z.023 2.o2'_ ...o_ 2.o.._
3._t2 _.109 3._ot_ _.10_ s. I01 z.oee

6.966 6.9<.6 ._._,6, 6.961 _.9_, _._:_
2. o56 2.o_e 2.o6o 2.o,¸2 2.oc_., 2.o_,_

3.o55 3.053 _.oso 3.o_7 _.o44 3.o4*

6.926 6.92, 6._.z2 _._2c, r_._? _.:,_
2.o94 2.o96 2.o_a z._oo _.Io_ ;.i,:,_
3.ooo ...._96 _.._'_ 2._.2 1.9':.o ._._8:

2._32 2.134 :._3_, 2.1_ ¸ _.14o _.._42
2.9,,7 2.944 2..'.,42 2._,_ , ._.gz? ._._3,

6.64.* 6.8.,,2 6.64o 6._?_ 6._3_ 6._s4
2.170 2.17_ 2.17,* _..i?_ z. 1_'_ 2._;_o

2.69_ z.693 z.8_o :._'_ :._'_ :.is: ¸

6.804 6.6o2 6._oo ,_.?s,e _..7:,,_ 6.?_,4
2.2O9 2.21_ Z.2_2 2.2,* ..;.Ic_ 2..is
2.,_4s 2.**42 2.64o 2._:'_ :._" _._s

6.?65 6.763 6.76_ 6.":_. t.?'_? _.'_'_
2.247 2.z49 2.2"bi z.;.'_ ;.;._5 ;.;._7

2.?96 2.?94 2.7_ 2.?._ 2.?_:,_. 2.7_,

6.?26 6.?z4 6.?23 ¢_. _ 6.71: . _.?_?

2.266 2.266 2.z9o z.2o2 _.:_4 _.2_,_
2.?49 2.746 2.?44 2.?*_. _.?_s z.?_7

2.325 2.3z7 2.3_9 2._3_ 2. s_._ z._:_'_

2.7o2 2.7oo 2.698 2.,_'6 z._.s ..i_i

41.

8._20
I. 299

4. B36

e. 0_4
I. 3_2

*.718

I. 3_*

?..>_s

*. 3v3

?, _-04

_ .4_4

1.49?
4. _

?._¢?

*. _e3

;, 631

7. _76

s. S'27

Z.844

?.417

_. 6e6

_. 74O
S.611

7.317

_. 4eo

J. *,:,o

7.176 7.174

_.J_8 .1.335

*._9 1,921
1.zr4 ._. 271

3.:11 !.209

s. 153 z. _'_o

6.998 6.996
;.030 _.03_

_. o,)5 z.og_

:.o6e 2.070

e.91_ 6._ql
Z._06 ;1.107

_,. 87z 6.8?0
2,143 2.145

2.9JI z.929

... I_2 2.1.4

2._20 2.222

6.753 S.7_

..78Z 2.77S

_.2")8 2. 300

2,7j"_ 2.7J2

8.117 e._14 8.11n e.10? 8.104 e. loo 8.o97

1.301 _.303 1.304 1.306 1.zo? 1.309 1.3ti

4.e30 4.e24 _._I,_ 4.e_2 4._n6 4.eoo 4.?94

8.0_i 8.o4? e.o*4 8.041 e.oJe 8.0z4 8.03_

i._ 1.3_ _.337 1.33e i.$40 1.3,1 1.343

*.':i_ 4.?07 4.70_ 4.c.9s ...6_0 4.6e. 4.67e

?._c 7.9e] ?.9_0 7.97_ ?.9?3 7.97o ?._67

_.s_c _.z6( _ _._9 1.371 1.372 1.374 i._76

4..:c0 *.'_* .._e_ 4.sez _._78 4.s72 4.567

7._ ?._0 ?._? 7.9,._ 7._i0 ?.9o7 ?.9o4

_.z_ , 1.,oo 1.402 i._0._ 1.405 1.407 1.409

4._ ,.4_ 4.4_ 4._76 *.471 _.4c_ 4.46o

7.s_i ?.:_8 7.3_'_ ?.ss_ ?._47 7.e4G ?.e43

t.*_2 1._s. _._ 1._z? t._9 1.440 1.44;.

..s{:_ 4.3s3 4.-_?? 4.372 4.36? 4._62 4.z_7

i._ 1.4_7 ,.,_, 1.470 1.472 _.474 t.*?6

?._4;: ?.?3s 7.?36 ?.73J ?.75o ?.?2e 7.?z5

i .,_._ i._01 1.503 1 .s04 1.s06 1 ._oe l._u9

,._I ..i_ *.T_2 4.177 4. t?Z 4.168 4.16_

?.68_ 7.68_ ?.6?9 ?.6?6 ?.6?3 7.67O 7.666

_._3Z I._35 I._6 I._3e 1.540 I.S42 I._43

_.0_ 4.0_4 4.08_ 4.0e_ 4.010 4.076 ,.071

?._2_ ?.6_ 7.62_ 1.620 ?.es? ?.614 7.61_

I.'_ I._69 I._71 i._72 i._74 1.576 I._7e

4.00_ 4.00_ 4.000 _.996 3.992 3.917 3.9e_

7.573 ?.sTo 7._6_ ?.._6_ 7._62 ?.56o ?._57

i .GO_ _.603 1.605 ,._0_ .._u_ _.olu 1.61Z

Z._2_ 3.919 _.914 3.9_0 3.9O6 3._'02 3.ege

?._,9 ?.517 7.514 7._11 7.s09 7._06 ?.5o3

_.c.s_ 1._s_ I._*0 1.6,_ _.64_ ,.o45 i.b47

_.6_0 _.e_c. _.ezl z.e27 3.823 _.819 _.e_5

?.*e6 7._4 ?.46_ ?.4_9 7.4_6 7.4_.i ?.4_i

1.671 1.673 1.675 1.677 1.67e 1.6e0 _._2

3.TSg _.?s_ 3.75_ 3.74e 3.?44 _.740 3.?z6

?.4_5 ?.412 ?.410 7.4o7 ?.40_ 7.4o2 ?.4o0

_.707 1.70_ 1.710 1.712 1.714 i.?_5 _.717

3.6e2 3.67e _.674 3.67o 3.667 z.66z 3.659

_.._* ?.362 7.&59 7..157 z.._s4 ?.3_2 ?.349

1.742 1.744 _.7_6 1.747 1.749 1.?st 1.75&

3.6o7 3.60z 3.6oo 3.596 3.59z z._e9 3._e5

?.315 ?.z12 7.310 7._07 7.3o5 ?.3o2 ?.&oo

1.778 t.779 1.78_ 1.78J I.?e5 _.?e? t.?ee

._._35 3._31 3._27 s._24 J.520 3._i? J.513

3.._'_ ?.4,:, _.._ _.4'_. 7._._i s._47 3.444

7._ 7.--h_ '.:'_ 7.ZI_ 7._0_' 7._07 ?.2O4

?.'?2 ?.I_, 7.1,_7 7.165 7._6Z ?.160 ?.15_

_._:_ 1._eS I._90 i.e92 i.e_3 i.e9_ 1.897

3.s_I 3.328 __._z_ s.322 3.3t_ _.31s 3.312

7.126 ?.iz* _ 12_ 7.119 ?.117 ?.115 7. t12

1.923 1.s,_ i:_,;,_ ,._e t._30 _.'_32 t.9_4

?.081 ?.07_ ?.07_ 7.074 ?.o?2 ?.070 7.06e

i._60 I._'6_ _.9_3 I._ _._67 1.969 1.971

_.20c. s.203 3._oe _?._? 3._4 3.191 3.1ee

7.0_? ?.os_ ?.03_ "7.0Jo ?.02e ?.o26 7.0_4

1.9_? i .9_9 2.uoo z.ooz 2.00_ 2.00e 2.008

s._47 s.144 3.,,I _._3_ _.,3_ 3._32 s.12_

2.0z4 2.o36 2.03e 2.n40 2.04_ 2.04z 2.o45

6.s51 6.949 _.947 6.94_ _._4_ ._._40 6.93_

2.o72 ;.07_ 2.07_ 2.o?? .'.07"_ 2.081 ?.oe3

_.oss z.030 ].02_ ._.02'_ s.022 3.01_ _.ot?

_._.0_ 6._07 6._(,'_ 6.s.oz _._ot ._.e99 6.89?

2.979 2._76 2.'_?_ 2.97_ 2._ee z.96_ 2.96_

2.1_6 _.ie7 _.i_, ;..I_i 2.193 2.19_ 2.1s7

z._?'. 2.e7_ ¸ z._:?o _._:_7 z.e6_ 2.e62 2. e60

_.?_e _.7_6 _.?:_ ,_._s_ _.780 6.?79 6.7?7

2.2z. z.2_ :._2s _._0 z.z32 2.2s4 2.236

2.263 2.2_5 _..z_7 2.L_ ¸ 2.z?o 2.27z 2.2?4

2.??7 z.?7'_ _.?72 2.??0 z.?67 2.?65 2.76_

6.7_I _.?0_ 6.?07 6.?0_ c_.?04 _.?02 6.700

2._02 2._04 z._o'_ 2.3o? 2.3o9 2.z_ 2._13

;.7?o _.7_ _.72- ..723 2.72_ 2.?_e 2.?_c_

c.._74 e.672 _-.670 _._6e 6.666 6.6c.._ 6.662

2._4_ 2.34] :._- _.3,7 2._49 _._-0 2.z_:

2.,_ 2.6e2 _.,_0 _._7_ _._7_ 2._?_ 2.671

8.094 8.o90 8.0_7

4.788 4._1j2 4o?77

_.028 8.025 1.021
1.34S 1,_46 1.340

4.673 4.667 4.661

7.964 7.%1 7,967
I._77 ,.37V t.3e_

• .S62 4.5S6 4._1

7,90_ ?.e_e ?,eg_

4.455 4.4_0 4.4_4

?.e4o 7.8_7 7.e_

1.444 1.445 1.'47
_._52 4.347 *._42

??co ?.777 ?.774

4.2_S 4.249 _.244

%722 7.?_9 7.716

?.Gu_ ?.662 ?.6_9

4.067 4.062 4.0_ I

?.609 7.6O6 7._1
1.5?9 I.S_I I.OU$
3,970 3.9?4 3.9?O

7._54 7._I 7.649

3.193 3.889 3.@8_

7.501 7.4_e ?..95

1._4_ 1.6_g 1.662

7.448 7.446 7.446

1.684 1.68_ 1.687
$.732 3.72e 3.724

?._97 7.z94 7.392
1.719 1.721 1.722

3.6_5 3,652 3.6.8

?.3_7 7.3** 7.342

_.754 _.7S6 1.75e
3.SBI _._Te 3.674

?.297 ?.29S 7,_93
1,790 1*792 1.794

_.$1o 3._06 3.Bo3

_ _ 9S

?.249 ?,_4r 7.24*

Z.44t 3.,37 3.434

7.202 7.200 7.197
1.862 _.S64 I._66
3.3?4 3.370 3.$67

7.1S6 ?.153 ?._1
1.999 1,901 1,903

3.30_ 3,306 3.303

7.110 7.10@ 7.10_

_.24_ _.2_ _.Z6_

?.06S ?.o_s r,O_l
1.973 1.974 1.976

3._es S._BZ 3._7_

2,0to 2.012 2.013
_,126 _.124 3.12t

6.97@ 6.9?6 6.974
2.047 2.049 2.oe_

2,oe_ 2.087 2,oe8

2.123 2._24 _.t_

6.854 6.e52 6.S_O
Z,_61 2.163 2.1_
2.908 2.ges 2.90_

6.814 6.el2 6.I10

2.199 2.20_ 2.203
2.857 2._5 2.8_2

6.775 6.773 6.771
2.23? _.ZS9 2.241

2,#oe 2._:)6 2.8o3

6.7_6 6.73" 6.732

2,276 2.278 2.280
2.760 2.158 2.756

6.698 6.696 6.694

2.ji5 2.317 2.319

2.?14 2,?12 2.?09

6.66_ 6.6_9 6,6_?

2.669 2.666 2,664

Velocity --- Velocity in Kilometers per Second

Period --- Period in Hours

Ang. Ve]. --- Angular Velocity in Radians per Hour
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TABLE 9 (continued)

|. s IL In X

l_Mod 2. J_,:, 2. _; 2._4 _.366 Z. 368 2- _7,:,

_ _rtcxl 2.*O0 :.*o2 2._0, 2.40_ _.,oe 2.410

0 A_.Vol. 2._.1_ 2._16 _._ 2.612 2._10 Z._07

l_rlo_ 2.*_ 2.*_ _.**_ 2.**5 2.44_ 2.*49

Veloc|t7 _._12 _.._0 _.708 _.S07 6.505 6._03l_t_ _.._1_ _.52_ 2._23 2._25 2._27 2.529

Vsloettlr _.*_e 6.47b 6.,7_ 6._72 6.47_ _.,69Period 2.5_(, 2._62 ;._6, 2.S66 2.56O _._70

A_. Vel. _._7 :.4_3 _.4_ 2.*_n 2.4_7 2.**7

9 v.L_It_ _.4_* _.442 _.**o 6.439 6.437 6.,_
M

i _ Axe. YeL _.416 2,4t4 2,413 2.411 2.409 2.*07
veloeit_ ,_.4_o _.409 6,407 6.405 6.404 6.*02

_ w_t_ _._ _.a:6 _._?, _.a:a _.a?, _.a_
l_ricd z-6s2 2,6e* 2.686 2.68e _.690 2-6_z

l_r_m2 2.8o6 2.808 2._0 2,_12 _.o_ 2.8_6

/mE. Yel, 2.239 2.230 2.256 2,2.S4 2.2_,_ 2.231

o P_riod 2.8_e 2.0_0 2.052 2,e54 2.a5_ 2,8_8

Ve|(_it? 6.22) 6.219 6.2t8 6,216 6.215 6.2_$l_rtod 2._90 2.e_2 2. i_9_, 2.e96 2._9e 2.'}00

l_rlod 2._2 2.9_'* 2.9_6 2,958 2.<)40 2.9,*_

2._12 2.,1,
2.605 2.603

0._72 6.S?O

_.$6] 2._61

2,_9t 2..93
2._2_ a,_2o

6,S02 6._00

6,_6_ 6,_66

2,572 2._7_
2._*_ 2.,41

6,,a4 6.*32

2,405 2.403

_.*oo 6.a99

2.a6e 2.]66

6.366 6.366
2.6_* 2,696

2,a_2 2._30

6.a_ _,3J4

6.30_ 6.$02
_.TT_ 2.779

6.273 _.271
2.819 2._21

2.229 2,228

6.2_2 6,241
2.860 2.862
2.197 2.195

6,212 6,2?O
2.902 2,905

2._6_ 2.163

6.762 5.180
2.94_ 2.947
2._]_ 2.132

Velocity --- Velocity in Kilometers per Second
Period --- Period in Hours

Ang. Ve]. --- Angular Velocity in Raclians per Hour
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TABLE9(continued)

VelocityPeriod

Velocity

Period
Ang. Vol.

Veloelty

Period
Ang. Vel.

Veloci_

Period
Ang. Vel.

Velocity

PQriod

Ang. Vel.

VeloclrV

Period

Ar_. VeL

Velocity
Period

Ang, VeL

VelocityPerlod

Ang. VoL

Veloclty

Perlod
Ang. VoL

Velocity

Period
Ang. VeL

o Velocity

Perlod

Ang. VoL

Velocity

Period
Ang. Vel.

VelocityPeriod

Ang. Vel.

Vel_ity

Perlod
Ang. Vel.

Vel_lty

Perlod
Ang. Vei.

Velocity
Period

An_. Vel.

g velocity

Period
&ng. VeL

Velocity

Period
Ang. VeL

Velocity

Period
Ang. VeL

Velocity
Period
Ar_. Vel

Velocity
© Period
_ A_. Vel.

Velocity
_ Period

N A.-_.. wl.

velocity
_ I_riod

Vel_Ity

_ Period
Ani. Vel

Velocity

Period
An@. Vel.

Velocity
Perlod

t_ An_, gel.

Vel_lty

_ Period
Ang. VoI.

Velocity

Period
An[. VeL

Velocity

Period
Ang. VeL

Velocity

Pertod
AalL Vel.

............ .... ; ;; ..... _: ..... _....................

5,b,_ 5._,0 5.':3 _ =.6 _ ?.us3 5.c:1 5._79 _,677 5,b7_ 5,67_

33.1tj 'a.9,_ 7;,12_ _7. '- 3-. ,74 7.:9::9 77.E_5 _7._ClO _7.75, 17.712

?_,cI_: 23,_,83 3j.'_S _% 'L,L %,._! Z3.83. 33.795 _?, 5_ 33.72; J3.68_

................. ..........x ..........i ...........
_u.,CC JO.':7" ?,7,.',_ _, Z',.,E:- _C'._'1 _0._:, : • , :,,._'_e zo._,,7

,.'_, it,,, 5. te_ %11o _.17_
.'. _, . ,.e,, :, }_, :;., r . ,.:_: :,. ±_, : .::_ 2,. _;5 Z:'.ICC 29. _7

%h,, : IO: %*ol 5.os, 5.0_ s.o,,! _,.os,, 5.0'_ 5.u9l _,.osu

z::. z_ . 7,,'_ -_s.7c.7 2:.7s_ :s.7_ .8.,s_ ;e._z ._ 6:7 2e.-.v9 2e.'_7_

2S,OSU 28. 023

Z,'.7: ' 27.71j_ 2,_._,7l_ :7,G'_,C, 27,62] 27,597 27.571 ..7._45 27,518 27.'92

•-, ,:IH 7 5.0,_ t,. ,31)e 5.002 $..71131 _.999 *.99{ *. ",9_ 4. ,94 *.992
5.542 _._*k 5.'5'33 5._5£ 5.5_3 5.5_. ' 5._74 5.579 _. 5_.4

.:7.2,,7 2_.[si 27.}5,: 27.131 27.105 ;7.08:_ 5._9027.0'54 27.Cl29 27.003 2_..978

•.97_ 4.97_ *. '73 4._71 _. 77C, _.9£ 8 4.966 4.9c'5 *.96J 4.962

5.G47 _.653 5, r_ 5.663 "._68 _.671 5._79 5.68* 5.6')0 5. c,.)_
2G./OZ 26.677 26.6'5; 26.b28 26.603 26._78 26._3 26.5._ 26._0_ 2_._00

_.9_ *.944 4.942 4.94_ _.S_9 4.938 _.916 ¢.935 4,933 4.9_2
¶'7_" _ 5" 7"_8 _'764 5"7B9 5"774 5"779 '_. 78% 5.790 5.795 _.eOl

2b.212. 26,188 26.16, ._6.1443 26.II6 26.092 2(..068 26.044 2%.0_u 2_.997

4.915 4,914 _.972 4.911 .. 90'3 4.908 4.906 4.905 4.903 4.902

5.85"3 5.8_ 5._70 5.07% -%880 5.886 5.891 _.096 5.902 _,907

25.73"7 25.71_ ._,.69 u 25.6G7 2_,644 25.620 25._97 25._74 22..5'51 2_._28

5.966 5.971 5.977 '_ 98. 5,987 ._.993 5.99& 6.00_ 6. [,oc_ 6.014

2"3.27c 25.253 2_.4_I £_'_.2,3s :',.IE:'_ 2_.163 2'5.140 2'5.118 25.095 Z.'%0/9

• .S_7 _.a_5 *.e_4 _.e52 _._51 '_.84S 4.1_*e *.g*7 4.e"5 4.e,4
b. Cr73 6. C'7_ 6.08_ 6.090 6.09_. 6.7011 6.106 6.111 (..117 6.122

2¢.82 _' 24.807 24.785 24.762 2_.741 2,.719 24.697 2*.675 Z_.6_3 _.632

4.82e 4.827 _.825 4.82'_ 4.e22 _.82' *.3_¢, 4.8_8 4.817 4.8_5

6. _12 _.187 L.. I_)Z 5.19_ 6._03 C.205 r.._14 6.220 6._25 6.2_Q

_.3h_ 24.273 2.¢. _ 2 2_.330 .'_._09 ;.4.288 _4.267 _4.245 24.22* 24.20_

.......4,:.........................................
':'2:'O _: _'. _- 3£_t (..307 6.712 6.318 6.32_ 6.3L9 6.934. 6.3_0

7.3.,73 2 _.;.q_l 2Z.910 23.E90 25._69 23.8_6 _.3.82_ 2_.807 2S. 787

4.773 _.771 _.770 ¢.765 4.76;' *.766 ._.764 4.?63 _.762 _. 7,_0

,_._0(, 6.4D'_ 6.411 6.41b G.422 G._27 6.4_3 6**.]8 6.444 6._.9

2_._,6_" ;.3._3 13.5;:_ .._.502 2S.482 23.4( 2 23.4,2 2_.422 2;._02 23.382

_. 7_,_ 4.?*_ .i. 7_ _.741 .i. 740 .i.739 *.7_7 4.736 4.735 4.7_3

G._IO 6.515 G.521 t>.52G 6._]2 [,.537 E.543 6.5,e 6._5. _._60

._.IE.5 25.145 23.12"5 23. tOG 23.086 23.007 2.1.047 23.028 23.000 22.989

Velocity --- Velocity in Kilometers per Second

Period --- Period in Hours

Ang. Vel. --- Angular Velocity in Radians per Day
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TABLE 9 (continued)

Velocity -~- Veloclty in Kilometers per Second

Period --- Perlod in Hours

Ang. Ve]. --- Angular Veloclty in Radians per Day
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TABLE 9 (continued)

Velocl_
_rtod

_. Vii.

p,rt_l

_I. VeL

_ Veloel_
l_rttxl

_. Vel.

g Veloetty

Velocity

Veloe|_

N _. ?el.

Period

_, _ _.v,,z.

AnG, Vel.

VelOel_

Veloelt7

N _. Vel.

VeloctL'y
Period

Ang. VII.

Velocity
l_ertod

_, V*I.

VeloCity
_. Yel.

Velocity
Anl. VeL

Vel_ity

Period

Vel_ity
Period

A_. Vet.

l_rh:d

A_I. VeL.

Vel_lty
A_. V*I.

*_IL Yel.

I VelOClt?
_a_. VIL

I I v'°_tr_P*rtod

Perl_xl

I Ve|_H7

_. VII,

Velo_iL'_

AnlL V*l.

I Velocity
An_. Vo].

l Velo_lt7

I Voloeit7
._i. Vel.

Velocity --- Velocity in Kilometers per Second

Period --- Period in Hours

Ang. Vel. --- Angular Velocity in Radians per Day

III- 5 5



TABLE 9 (continued)

qL m, Im,

l Vtfloett7 J.u4s 3._.42 3,_3_,
_ 14.3(,( t4,400 )*.(_,

AllL ¥eL 10.,198 10.42._ +0.,0_6

t Vok3¢,,tt? 3._g6 3.51_ 3.590Pm't04 15.0_9 )5.t25 1_.162

n AalL ¥eL 9,99* 9.9?o 9.9._

V_c_*l_*_r ,1. $29 $, _2"P 3. 524
_rbxl 1_.825 s_,06:I_.999

Anl[. ¥0L 9._29 9,_07 9._*95

m V'dC_cltY 3.42_ 3..7_ 3.420
+6._72 16.610 46,649

..4,ml. Vol, 9.o99 9.o?9 9.0'59

v*n_ny 3.424:1,,,2) $.,,19
pme, lcM +7.3_1 u7.369 +7.40_

_. VoL 8.701 |.692 r_.663

j V_octt7 3,32_ 3+372 3.370
_ _0.10+ le._40 )e. 129

/ml. VoL e.3Jl 8,_1_ 8.295

ii | "_ ..............

_tod 20.47B 20.519 20._5q

_. VoL 7.364 7._49 7.3_5

i V*lc_ 3.)S7 3. S95 3.193
_ 21.2_ 21.332 71._J

J_. _141L 7.01_2 7.069 7.055

t V_c_t_ 1.1S7 1.15s 2_.153
A_. Vol. 6.m_9 _.,o6 6.791

_1o4 22._ 22.992 23.034

t Veloett_r l.oel _.079 3.07_
_.VoI. _.337 6.326 _.115

VO_O_ 3._45 l. O41 _.Olt

I VolOeR7 3.0_0 1.00_ 1.00_
PoMod 25.$1, 25._$_ _5,6'S_

AI_.VeL 5,910 5._00 _.SgO

I VeI_S7 2,9_6 2.975 2,97_ 2.9?) _.'_70 2.9_ _,9,_ :.+,c" _._2 _._)
_dcd :6.$99 26.+23 2r_.42_ ,_6,_;) 2_._5 _,_._0_ :..+_* _._:'_ --_.7.: ¸ =_.7_

,'4_I. VoL _.7t4 5.70_ 5.695 5._,e,_ 5.67_ _._,:7 _.6-_ ,._*_ 5._39 ._.,_;0

i Voloe|t7 2.9,14 2.9(2 2._*0 _.9_9 _.937 2._¢ 2,9_4 _.gs_ .._l 2._9
]N*_ 27,274 22,_15 22,]6J 27.*O7 27.+_2 2?,*% :7.'_,+ _._,, ;?.c_]o 27.,_

_, YlI. 5.529 _.520 5.51_ 5.5o2 5.(_ 5.+_* 'L+?" _.+66 5.(5s 5.+49

VM_ 2,912 2.9)_ ;_.9O9 2.909 2._0_ 2.9o* _.90J 2.901 _.900 2.899

Volo_ 2._2 2._51 2.0+9 2.8.$_ 2.646 2.945 2.643 2.94_ 2.6_t 2.G39
IP*_ 29.91_ JO.03_ 30.077 30. tZ3 30._9 _0,2_5 30,2_ _0.307 JC'.35J 30._99

j V_o_ 2.823 2.022 2._21 2.919 _.818 2.e_6 2.e_5 2.9_* 2.SI_ 2.811

Y_o_l_7 2.79& 2.?94 2.755 2/792 2.7_0 _.?_9 2.7B_ 2.786 2.785 2.7(_$

Aag. VeL 4.736 4.'r29 4.722 _.715 4._e _._o? 4_95 4._89 _._ 4._4

]_ 32.reo 32.82_ 32.875 _2.922 32.970 S_.O_ S_._, _._ ]_.1_9 33._07

Po_r_.od 15.730 J3.778 33.I26 13.g74 33.922 31.969 _4.0_7 14.0t5 34,*1_ c 34,16)

V_ 2._17 2.T1_ 2.7)4 2.71_ 2.712 2.7_U _.709 2.70_ _.707 2.70_
]_e_l_ _4.690 34,738 34.786 34.g34 _4.892 ?*.�ll 34.979 $5.n27 _5.07_ 1_,_24

_.V_. 4.14_ 4.14t 4.335 4.12:9 4.121 4._7 4..tl _ 4._05 4.299 4.29_

Yllloe, K'y 2._92 _.6)1 _.690 2.608 2._.07 2._06 ._.6,? _.(+8. _.(e_ 1.6e__od Jg._l_ 2q_.7_ 35._55 15._04 15.892 15,901 J5,950 J5.990 1_,_47 _.09_

_1_. VI_. 4.229 4,223 4.2t9 4,212 4.206 4.200 4.295 4.199 4, _E_3 4.t78

j Ve&oeKT 2.660 2._67 2.666 2._ 2.663 2.662 _._6_ 2.6_0 2.65_ 2.6U7
]i_B_'_r'd 16,614 1£.£04 36,711 16,782 16.1111 3b,880 3b.929 /&.,_7_ I?.O_E t 37.077

AmLVM. _._I* 4._)U 4.105 *,moo _.094 ,*.0_9 4.08_ 4,07_ 4.07_ ,*.oa_

V_I_I_ _ 2.644 2.*43 2. I242 2.&41 2. G40 2.6J9 ,_*bJ7 _. 6._6 2. b35 2°634%7.9_¢

i Vdo_ 2,622 2.620 2.619 2,6_e 2._7 2._1_ _._ 2.6_* 2.61& 2._1_
1_rl0d J8.61. 3e.6_4 211.7_4 30.76.* _.llu_ 3e.e_+ Je.914 38.96.1 _9.0_ 39.06_

AJ_.VoI. 3._5 3.900 3.895 3.090 3,$83 3._8o j. ST_ J,B?O 3._5 3.860

l VO|O_ 2.599 2.598 2.597 2.596 2.59_ 2.59,* 2.593 2,592 2.590 2.S89
_r_od 39.617 39.66e 2q.718 _0.769 _.e_9 ]9._69 _9.920 _9._70 ,n.o_ 40.07_

_.V_. 3.00_ 2. Iron 3._97 3.792 _.787 3.792 3._77 3._73 _.7_ 3._G]

m. S_. m. um. /_. t_. I m. tm. _.

14.7_5 14.761 14.79, 14._]4 14._?0 1q.906 14.9¢] 14.979 I_*01[ I_.052

3.557 3+5_+ 3.552 _.549 3,_46 _.5+3 LS+O 3.5]8 2.535 2.5_2
15.45_ 15.492 15.529 I_.566 15.60] _5.640 I_.676 15.71_ 15.750 15.?_

3._02 3._99 3._97 J.*�* 3.+9_ 3.*s9 S.4_6 _.+03 3._91 3.,71
1_.197 16._4 1_._72 Ib._09 %_.347 16.|_4 16.4_2 1_.459 _6.497 _6._]4

9. JlO 9.289 9.267 9,2m6 9._25 9.204 9.183 9.162 9._41 _.t20

16.950 _6.99B 17. 026 17.064 )7.1o_ i1.1+o 1?.178 1_21? 17.25_ _?.2P2
8.896 e._77 _._7 9.8_7 9.e17 9.79e e.??B e.759 0.7_9 1.7_o

L_.9 3. JP7 3.J_.4 3._92 ].399 3.387 3.38* ].J_2 _._0 3.37?

IT.715 17.75_ 17.792 l?._JO %7.*_9 17+90_ 17.546 17.9|_ 1_.024 %_.06_

e.512 8.49* $._ e._57 _.4_9 8.42+ *.4o3 e.385 e._7 e.$49

8.155 S. 13_ e. t21 S._04 8.087 e.O?O e+05_ 1.036 I.ot9 i,oo3

3.$05 3.$02 3.30Q _.298 3.296 3.293 3,291 3.2B9 ],287 3.2m4
19._77 19,_17 19+3_l 19._96 1"9,436 19.47_ 19.515 79.555 19,595 I_._1_

_.2_0 _.259 3._56 3,254 Z.252 3.249 2.2_? ].2'5 2.2_3 _.2,+
20.075 20.+)5 20.155 _0.196 20+22_ ?0.27_ 20.2s_ _0._'J_r2_._'r _.4_?

7._12 7.49? 7.492 _.,07 7.452 7._37 7.422 7.4oe 7.39_ 7.3_

3.218 3.2_6 _,2_] _.2_ 3.209 3.20? 3.205 2+203 _.20_ _.19_

20.88_ 20.92* _0.965 2q.005 21.0,_ 21.oe? 2_.t2e 2t._ 21.2_0 2_.2B_
7+_21 ?.207 _.19_ ?._?_ 7.+65 7,_5+ 7.+_? ?.+2, ?.1_0 7+09,

21.702 21.743 21,?_5 21,826 21._67 21.909 21,_50 _1,991 2_,023 22.0?4

6.94B 6.935 6.922 6.909 6._96 6.983 _.,70 6.,57 _.$44 _.*$_

]._7 3.135 J*_J3 J.1_ _.129 $._29 3.126 3._24 3.122 5._20
22._32 22.5?3 2;._5 22._ _2.699 _21_+0 22,_|_ 22.824 22.1v_6 22._011

3.099 3.0_7 3.0_ _.0_* _.092 3.09O 3. oee 3.oe_ 3.oe4 _.o_

_.,52 6.+4_ _._2+, _.+17 _.(o_ 6._94 6.3e3 *.37+ 6._60 6._¢9

3.062 &.O¢_ 3.059 J.052 S.05_ L05_ &.052 3,050 J.049 $.o*_

24.221 _4.264 24.306 24+349 24.392 24.435 24.47_ 24.521 24.564 24.&0?
6.226 6.215 _.20( _.IgS _._82 6+)7_ 6.1_1 6.150 _.n_9 _._21

3,027 _.025 S,02( ],022 3.020 3.ore LO)? 3.0_5 3.9_J _.0)2
25.0_t 25.1_4 25.1_7 25.211 25.254 25.297 25._41 25.394 _5.429 25.471

e.o_2 _.oo_ 5.992 5.9_I 5.97) 5.9_ 5.951 5.94_ _.9_0 5.920

2.993 2.99_ _.990 2.99_ 2.98_ _.ge_ 2.9e_ 2.911 2.900 2.9_e

2_.95_ 2_,994 2_.03e 2¢.082 2¢.126 2_.)70 2_.2_3 26.257 26._0q 2_,3(_

Velocity --- Velocity in Kilometers per Second
Period --- Period In Hours

Ang. Vel. --- Angular Velocity in Radians per Day
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Velocity of a Satellite ill a Circular Orbit as a Function of

(English Unit - see Table 9 for Hetric Data)
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Fig. 8. (continued)
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Fig. 8. (continued)
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A. INTRODUCTION

TheKeplerianrelations,asdiscussedin
ChapterIIl, giveconvenientapproximationsfor
usein preliminaryorbit computations.However,
in orderto obtainpreciseearthsatelliteorbits,
thevariousperturbingfactorswhichgiverise to
accelerations(inadditiontothatof thecentral
forcefield)andcausethemotionto deviatefrom
pureconicformmustbeconsidered.Theseper-
turbativeaccelerationsmaybedueto themass
asymmetryof theearth, thegravitationalattrac-
tionofotherbodies,atmosphericdrag,electro-
magneticdrag,radiationpressure,thrust, or
mayberequiredtoaccountfor relativityeffects.
Thesefactorsaffectthemotionof thesatelliteto
avaryingdegreedependingontheshapeand
massof thesatelliteandthetypeoftrajectory.

Specialperturbationmethodsinvolvethe
formulationofthedifferentialequationsof mo-
tionin suchamannerthatthecomputationof an
orbit is achievedbynumericalintegration.The
perturbationmethodto beusedis determinedby
thetypeof problemthatis underconsideration.
Similarly, all combinationsof integrationtech-
niquesandperturbationmethodsarenotequally
suitedto thesolutionof a particularproblem,
eventhoughtheuseof suchcombinationsis pos-
sible. Becausenumericalintegrationis subject
to theinevitableaccumulationof errorswhich
eventuallydestroythevalidityof theresults,
specialperturbationmethodsare restrictedto
thepredictionof earthsatelliteorbitsfor times
dependentuponthedesiredaccuracy,thefor-
mulationof theproblemandthenumberof digits
carriedin thecomputations.

Onesourceof error in thenumericalintegra-
tionprocessis roundofferror, resultingfromthe
limitednumberof digitswhichcanbecarriedin
computation.Theroundofferror is notreduced
bydouble-precisioncomputationwheretabulated
valuesto beinterpolatedat eachintegrationstep
areknownto lessthansingle-precisionaccuracy.
Thiserror obviouslyincreaseswiththenumber
of computations,whichin turn increaseswith
decreasedintegrationstepsize. Roundoffpropa-
gatesthroughthenumericalintegrationsothat,
assuminganormalerror d_stribution,theabsolute
error incurredin doubleintegrationis

(theproductofthenumberof stepsand
theoriginalroundoff)3/2

A secondsourceof error is truncation. This
error arisesbecauseofthefinite polynomial
approximationsin the integrationformulas.Since
thetermsin thepolynomialsinvolvepowersor
differencesof theintegrationinterval,thetrun-
cationerror canbereducedbychoosinga smaller
integrationstep. Therefore,increasingthenum-
berof integrationstepsdecreasesthetruncation
error, butincreasestheroundofferror.

B. SPECIALPERTURBATIONS

i. Perturbative Forces

The equation of motion of a perturbed orbit is
of the form:

IV-2

r = -U --_ + F (i)
r

where F is the sum of the accelerations due to

the various perturbing forces. If F -- 0, there

are no perturbations and the motion is Keplerian.

If the position coordinates of the vehicle and

the perturbation accelerations are given in rec-

tangular equatorial coordinates, Eq (i) can be
written:

"" X _oox = -U -_ + x i, x-*y, z (2)
r

1

where x i is the sum of the perturbation ac-

1

celerations. These terms are discussed in the

following paragraphs.

a. Vinti potential

If the earth were homogeneous in concentric

spherical shelis, its potential would be that of a

point mass. The effects of the flattening of the

poles and lack of symmetry about the equator,
however, manifest themselves as perturbative

forces on satellites in the vicinity of the earth.

The acceleration due to the oblateness of the

earth can be written in a simple form attributable
to J. Vinti of the National Bureau of Standards:

oo _x i - 5
x = --_ 2

r

Z Z

J3F 3 - 7 r--g

+ J4 3+ 42 -2" - 63 zr Y

+ J5 -69:3 + 630 r _ - 105 +...

(3)
oo oo

y = x y-
X

°° _z 3 - 5
z ---5 r 2

r

+ J3 _ 1 + 10 _Z
r

+ J4 g 15 + 70 --2 - 63
r

+J5 z8 5 -

2 4
Z Z

315 --_ + 945 --4
r r

- 693 + ...



whereJ. aretheharmoniccoefficients.Sincez
theearthis almostsphericallysymmetric,the
Ji areall smallcomparedto 1(seeChapterII).

b. Perturbativetermsdueto remotebodies

Theperturbativetermsdueto remotebodies
whichcanbeconsideredaspointmassescanbe
writtendirectlyfromtheintegralsfor then-body
problemasdevelopedinMoulton(Hcf. 1)andin
othertextsoncelestialmechanics.

n

x = _i -

i=l \ r_ i

n

Y = "i [ YAi " (4)

i=l i -

n

z)z = _i ---'J- -

i= i r&i i -

where rat is the distance from the satellite to the

ith body and r. is the radius from the center of
z

the earth to the ith perturbing body. For the case
of an earth satellite, lunar and solar attractions

are the major sources of perturbations for short

term orbits. The order of magnitude of these

perturbing forces may be observed in Fig, 1.

(Subsequent discussions appear in Section C of

this Chapter. )

c. Thrust

If thrust is applied, it may also be handled

as a perturbation. The general procedure, how-
ever, for large thrust-to-mass ratios is to treat

the thrust periods in a different fashion by con-

sidering the vector sum of the thrust and central

force terms as defining the reference trajectory
rather than the central force term alone. Since

the thrust vector is determined by the maneuver

requirements and the guidance law to be utilized,

no analytic solutions are available for this ref-

erence trajectory; thus, numerical integration is

necessary. Indeed, no single form of the per-
turbing acceleration can be written other than its

resolution in terms of generalized vectorial coro-
T T T

x --Y-- and z
ponents; for example: --_-, m m

d. Atmospheric lift and drag (Her. 2)

oo
X {[. vD02 _2 '_ (v) cr (H) y (a) v .--2-s

- l.l'_{v) ff(H) _ (if)y _O 0 _ X x sin

I ('-:)Iq ....+ V x x cos x-, y,
X

(5)

where the vehicle velocity relative to a

rotating atmosphere with cross winds is

given by

ls
X

V

Y

lJ --
Z

where

+y_e+ q (cos a sin ¢' cos

+ sin a sin fl)

jr - Xf_e+ q (sin a sin ¢ ' cos

- cos a sin _)

- q cos ¢,'cos

A constant fitted to the Maeh

number variation of the drag
coefficient with a mean sonic

speed = 1

A 0 Initial projected frontal area of

2
the vehlcle, m

B constant fitted to Math number

variation of the drag coefficient

with a mean sonic speed

,-0f%')= Cs ___---

CDo =
reference (hypersonic continuum)

value of the drag coefficient (0.92

for a sphere, 1.5 for a typical
entry capsule)

C L = lift coefficient

C = local sonic speed in terms of sur-
s- face circular satellite speed

D02 CD0 g0m0= AO Po Vc02/2

f(r) = U 0 D02 o_(c;)

go = acceleration of gravity at unit dis-
tance (surface of earth)

H altitude above an oblate earth " r - 1

f2 (.'-- _)+fsinZlb' +'2" - sin2 20' +''"

i

where the flattening f ,, _ (units

of earth radii)

m ,, mass of space vehicle (kg)

•, unit vector in the orbit plane perpen-

dicular to the Iine of apstdes

q = speed of the cross wind measured in

a system rotating with earth's angular
rate (units of surface circular satellite

speed VCO)

r = radius from the geocenter to the vehicle

= speed of the vehicle with respect to an

inertial frame, directed along Q



Surfacespeedfor circularorbit--
VCO= 7905.258 m/sec

X, y, Z = equatorial coordinates in units of

equatorial earth radii

right ascension of the vehicle (radians)

azimuth of the direction from which

the wind is coming

CD (V/Cs)/CDo, the drag coefficient

variation with Mach number

,l (_) =

e

_.4 ! =

p :

PO ':

C D (a)/CDo, the drag coefficient varia-

tion in the transitional regime

constant relating to the rotational rate
of the earth, 0.058834470

m0/m

bank angle

atmospheric density, kg/m 3

"sea level" atmospheric density,

1. 225 kg/m 3

P0

q_' = geocentric latitude, radians

e. Radiation pressure

/k body in the region of the earth is subjected

to solar radiation pressure amounting to about

4.5 x 10 -5 dyne/cm 2, the order of the force being

the same for complete absorption and specular

reflection of the radiation. Radiation pressure

is an important source of perturbations for satel-

lites with area-to-mass ratios greater than about

25 cm2/gm. The effects of radiation pressure

on lifetime are discussed in Chapter V and also

in Section C-7 of this chapter.

The rectangular coordinates (X-axis toward

vernal equinox) of the accelerations are:

x = f cos A °
oo

y = f cos i ° sin Ao (6)
oo

z = f sin i sin A

where:

i = inclination of the ecliptic to the equator,
o 23. 4349 °

A = mean right ascension of the sun during

® the computation

4 ---_.
sec

f. Electromagnetic forces

As a satellite moves through a partly ionized
medium, the incident flux of electrons on the

satellite surface is larger than the ion flux, so

that the satellite acquires a negative potential.

On the day side of the earth, this effect is op-
posed by the photoejection of electrons. Jastrow

(Ref. 3) estimates that the sateliite potential may

approach -60 volts on the day side and will not be

greater than -10 volts on the night side.

In addition to the potential acquired by ionic

collision, the motion of a conducting satellite

through the magnetic field of the earth causes

the satellite to acquire a potential gradient which

is proportional to the strength of the magnetic

field and the velocity of the satellite. The inter-
action of the electric currents thus induced in the

satellite skin with the magnetic field causes a

magnetic drag to act upon the satellite; this drag
is proportional to the cube of the satellite dimen-
sions.

If these forces are found not to be negligible,

they can be included directly by the use of Max-

well' s equations or indirectly by use of an at-

mospheric model which takes the effects into ac-
count.

g. The effects of relativity

Perturbations caused by relativity are of the
2

VO _ , where c is the speed of
order c_- "2- = ----g

C re

light. Since c_ is a very small quantity and any

measurable deviations occur only after a long

period of time, relativistic effects can usually

be ignored in the case of earth satellites. Amod-

ification of Newton's law as a consequence of the

theory of relativity can be found in Danby (Hcf. 4).

Substitution of these perturbative accelera-

tions (a through g) in Eq (2) yields the complete

equation of motion.

2. Special Perturbation Methods

Three special perturbation methods currently

used for computing earth satellite orbits will now
be discussed with an evaluation of the main ad-

vantages and disadvantages of each.

a. Cowell's method

In Cowell's method, the total acceleration,

central as well as perturbative, acting on a

satellite is integrated directly by one of the

numerical integration techniques (Section B of
this chapter). The equations of motion which

must be integrated twice to obtain position co-
ordinates are:

"" _ Z °xi'x = - r° + . X -'_y, Z.
1

These equations are symmetrical in the rec-

tangular coordinates and are simple in form;

they apply to elliptic parabolic and hyperbolic

orbits, and require no conversion from one co-

ordinate system to another.
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A disadvantage of the method is the large

number of places which must be carried because

of the large central force term to prevent loss

of significance for the small perturbations. Also,

since the total acceleration, which is subject to

fairly rapid changes, is being integrated, it is

necessary to use a smaller integration step to

maintain a given accuracy. This requires an

increase in the number of integration steps and
the inherent roundoff error accumulation. De-

tection of small perturbation effects such as

those caused by radiation pressure may be im-

possible due to roundoff and truncation errors.
Cowell's method is especially useful when the

perturbation forces, such as thrust, are of the
same order as the central force.

b. EnckeSs method

In the Encke method, only the deviations of
the actual motion from a reference orbit, which

is assumed to be reasonably close to the actual

orbit, are integrated. Usually a two-body ref-

erence orbit is used since the position at any time

on this orbit can be determined analytically. How-
ever, more complicated reference orbits such as

Garfinkel's solution (Ref. 5), which is known

analytically and which incorporates some of the
oblateness effects in the earth's gravitational

potential, might be used on an earth satellite
orbit.

Let x, y, z denote the actual position of the

satellite and x e, Ye' Ze the position on a Keplerian

reference orbit.

The equations of motion in an inertial frame
of reference are then:

•_ _ _x _ oo+ x i x -_y, z (7)
r

1

x

• . = e
Xe -P --_ Xe -_ Ye' Ze (8)

r
e

Let the deviations from the reference orbit

be _, q, {' so that:

_' = x - x e

: Y Ye

= Z Z e

Differentiation

(7) and (8) into

x-x
e

\ e

= C/J {x

t (9)

of Eq (9) and substitution of Eqs

the result yield:

x_y,z for _ _n,{

x + xi

- _ _ + x i

i

(10)

Because of the possible loss of significance in

subtracting nearly equal quantities in Eq (I0), it

is necessary to rewrite Eq (i0) in better compu-
tational form.

Substitute Eq (9) into the defining equation for
2

r :

2 2 y2 2r : x + + z (ii)

: (xe + _)2 + (Ye + U)2 + (Ze + _,)2 (12)

2+2 [[ +i i= r e (x e _)+ r2(Ye + _ _)

+ _(Ze+ ½ _')] (1_)

Define q to be:

i [[ + ½[)+ _(Ye + ½ 7])q : ---2- (Xe
r

e

1 [)] (14)+ ¢(Ze + 2

So that Eq (13) becomes:

(r_) 2 (__£e)3 2q)_ 3/2
: 1 + 2qor = (1 + (15)

Encke's series, using a binomial expansion, is

defined by:

2

,
: _ (_l)k-i (2k + 1)! k = fq

-1/2 < q < 1/2 (16)

Substitution of Eq (16) into Eq (10) yields Encke's
formula:

oo_" = # (fqx - {) + x i

e 1

(17)

This equation, which employs series expansion,

yields more accurate deviations when the terms
are small. When the terms exceed a certain

limit, a process of rectification is initiated,
that is, a new reference orbit is computed. The

limits on q needed for rectification are estab-

lished as:
n+ 1

]q[ < r e _ (18)

where A_" is the allowable error in _" and an+ 1 is

the coefficient of the first neglected term of the
Encke series.
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In contrastto Cowell'smethod,onlythedif-
ferentialaccelerationsdueto perturbationsare
integratedto obtaindeviationsfrom atwo-body
orbit. Thesedeviationsarethenaddedontothe
coordinatesof thesatelliteasfoundfrom the
two-bodyorbit to obtaintheactualpositionofthe
satellite. Sincethedeviationsaremuchsmaller
and,therefore,neednotbedeterminedasac-
curately,it is possibleto maintaina givenac-
curacywithlarger integratingsteps. As a con-
sequenceof thelarger integratingsteps,there
is lessdangerof seriousroundoffaccumulation.
Moreover,theintegrationerrorsaffectonlythe
leastsignificantfiguresin thedeviationsand,
whenaddedto themuchlargerpositionsdeter-
minedfromthereferenceorbit, shouldhavea
lessseriouseffectontheoverallaccuracy.Al-
thoughtheroundofferror is less, Encke's
methodinvolvesexpressionsthataremuchmore
complicatedandoftenlesssymmetricthan
Cowell'ssimpleformulas. In addition,boththe
necessityof solvingthetwo-bodyformulasat
everystepandthepossibleneedfor rectification
introduceadditionalsourcesof error. In the
former case,thefrequencyof rectificationaf-
fectstheattainableaccuracyandalsointroduces
smallerrors in thedeterminationof themean
anomalyM. For thecaseof nearlyparabolic
orbits, errors in theuseof thetwo-bodyformu-
las in anunalteredform areespeciallycritical.
This is dueto thefactthatwhentheeccentricity
e -_ I, and the eccentric anomaly E is small, can-

cellation errors arise in forming the radial dis-

tance r = a (i - e cos E) and the mean anomaly
M = E - e sin E. In addition, small division er-

rors will be introduced in forming p/a = (i - e2).

The Encke method is especially suited to

problems in which the perturbative accelerations

are not large and have their major effect over a

limited portion of the orbit, e. g. , lunar and in-

terplanetary orbits except microthrust or long-

thrust trajectories.

c. Variation-of-parameters method

The variation-of-parameters or variation-of-
elements method differs from the Encke method

in that there is a continuous set of elements for

the reference orbit. The reference motion of the

satellite can be represented by a set of param-

eters that, in the absence of perturbative forces,

would remain constant with time. The perturbed

motion of a satellite may thus be described by a

conic section, the elements of which change con-

tinuously. The variable Keplerian orbit is tan-

gent to the actual orbit at all times, and the ve-

locity at any time is the same in both orbits.
This reference orbit thus osculates with the ac-
tual orbit. The variations in the elements used

to describe the osculating conic can be integrated

numerically to solve for the motion.

Any set of six independent constants can be

utilized for this purpose though it is conventional

to use the geometrical set a, e, Tp, _, f_ and i.

Lagrange's planetary equations, which specify

the variations for this set of parameters, are

derived in Section C of this chapter.

It is also possible to choose a different form
for the reference motion. As in Encke's method,

Garfinkel's solution which includes part of the

perturbative forces caused by the nonspherical

shape of the earth might be employed. If the

drag force predominates, as in the case of entry,
a rectilinear gravity-free drag orbit as applied

by Baker (Ref. 6) can be used instead.

Many variation-of-parameters methods have

been proposed including those of Hansen,

Stromgren, Oppolzer, Merton and Herrick.
These methods differ in the choice of elements

or parameters and of the independent variable.

Of these, the parameters suggested by Herrick

(Ref. 7) will be briefly described here.

Let x , Y_o be rectangular coordinate axes

in the instantaneous orbit plane with x the

axis along the perigee radius as shown. Let P

be the unit vector in the orbit plane in the di-

rection of perigee, q be the unit vector perpen-

dicular to P in the direction of motion along the

y0-axis and W be the unit vector normal to the

orbit plane in a right-hand system.

The parameters selected by Herrick for or-

bits of moderate eccentricity are vectors A_(t)

and 13(t), the mean anomaly M and the mean

motion n. The vectors A and B are defined by:

M = n(t - t 0)

Z

X

n = ke_a_

where

a = semimajor axis

e -- eccentricity

p = semilatus rectum

k e = G_

_Y
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The differential equations in the parameters

have the form:

t

X = 20+ ke_ A'dt

t o

t

B = Bo+k e _ B'dt

t 0

t

n(t) = n 0+ k e _ n'dt

t o

M(t) = M 0

t

+n o (t - t0)+ ke_ _ n'dtdt

t o

t

+ k e _ M'dt

t o

and the perturbative variationsA', B', n', M'

are defined as:

B
D : e _/a sin E : r-

P

H = ex -r • i%.

_-D'= r F:XFx+YFy+_Fz

dD'

_ --St- (dx= 2 ._= 2 fit" Fx + _t Fy dz )+_WFz

2
r dD'

H' = 2 DD' -

dH' D'
--d[- =_-/-

-'dH'r-a- - H, I-,

r-di- --_

2 _- -- I_ B '+A B '+A B 'e v' =A. ' =A x x y y z z

_/-aM' = _/p-v'- 2D'

3 na dD'

n' =-gl/- _ -dr-

The Herrick elements must be related to the

rectangular coordinates and to the usual elliptic

elements because the perturbative forces F are

given in rectangular coordinates. It is thus

necessary to go through the two-body formulas at

every step, as in the Eneke method, and through
some complicated conversions as well.

The essential characteristic of this method is

that the integration is carried out on parameters

which are much more slowly changing functions

of time than rectangular coordinates. Since they

vary slowly, the error accumulation from the

calculation of the derivative is, for a long time,

far beyond the eighth significant digit of the
initial calculation. Thus, it is expected that

truncation error would appear only for very large

intervals and much larger integrating steps can
be taken for a given accuracy. Since in this

method a system of first order equations is

being integrated, there is less danger of round-

off error accumulation. A disadvantage is that

the programming and numerical analysis in-

volved in this method are the most complicated
of the three methods discussed. Because of

this, the computing time per integration step is

at least twice as long as for a Cowell method.

The Herrick formulas given here lead to special

difficulties on low eccentricity orbits because of

small division problems. Similar difficulties

arise with other variation-of-parameter methods

for low inclination orbits, as well as for hyper-
bolic and parabolic orbits. Such cases all re-

quire special consideration, thus detracting from

the usefulness of parameter methods as basic

integration tools. A new method due to Pines

(Ref. 8) is apparently suitable for all earth
satellite orbits. The variation of parameters

method is primarily applicable to missions in

which small perturbations act throughout the

orbit, e.g., mierothrust transfer.

C. METHODS FOR NUMERICAL

INTEGRATION (REF. 9)

Of the factors affecting the choice of an in-

tegration method for space trajectory calcula-
tions, the two most important are speed and ac-

curacy. Other factors, such as storage require-
ments, complexity, _nd flexibility, are of sec-

ondary importance with most modern computers
such as the IBM 7090. A good integration sub-

routine should have the following features:

(i) It should permit as large a step-size as

possible. Thus, higher order methods

should generally be given preference
over lower order methods.

(2) It should allow for the automatic selection

of the largest possible integrating step

for a required accuracy. The procedure

for increasing or decreasing the step-
size should be reasonably simple and

reasonably fast.

(3) It should be reasonably economical in

computing time.

(4) It should be stable; that is, errors in-

troduced in the computation from any

source should not grow exponentially.

(5) It should not be overly sensitive to the

growth of roundoff errors, and every
effort should be made to reduce roundoff

error accumulation.

Some of the more commonly used integration

methods are compared in detail on the basis of
these criteria.
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1. Single Step Methods

Of the various Runge-Kutta methods the Gill
variation is most popular. It was devised to re-

duce the storage requirements and to inhibit

roundoff error growth. There seems to be little
reason to choose the Gill variation over the

standard fourth order method when modern com-

puters are available, because the storage savings

are insignificant and the roundoff error control

can be achieved more simply and more effectively

by double precision accumulation of the dependent
variables.

The process of double precision accumulation

can be used with any integration method. It is

extremely effective in inhibiting roundoff error

growth and very inexpensive in machine time.

The process consists simply of carrying all de-

pendent variables in double precision, computing

the derivatives and the increment in single pre-

cision, and adding this precision increment to

the double precision dependent variables. For

integrating a single equation of the form Y' =

dy/dt = f(t, y), the formulas for the standard

Runge-Kutta fourth order method are

kl = hf(tn' Yn)

k 4 = hf,(t n+ h, Yn + k3_/

(19)

(continued)

Yn+l = Yn + _(k 1 + 2k 2 + 2k 3 + k4)

where h denotes the integration step-size and n

denotes the integration step.

Runge-Kutta methods are stable, follow the

solution curves well, have a relatively small

truncation error among fourth order methods,

and do not require any special starting proce-
dure. However,

(i)

(2)

(3)

They tend to require more computing

time, since four derivative evaluations

per step must be made compared to one

or two for other multistep methods.

The usual fourth order methods restrict

the step-size for a required accuracy.

There is no simple way to determine the

local truncation error and, as a conse-

quence, it is difficult to decide on the

optimum step-size for a required accu-

racy.

Various suggestions have been made for over-

coming this deficiency. The same trajectory

could be integrated twice: first with step-size

h and then with step-size h/2. The difference
between the two values at a time t can then be

used to decide whether the step-size should be

increased or decreased. This process involves

three times as much computing and, therefore,
cannot be seriously considered. The simplest

method, proposed by Aeronutronic, is to integrate

over two intervals of length h and then to re-

compute the dependent variable using Sirnpson's
rule,

Yn ( )I h + 4y n + ,Yn 1 l)
The difference between this value and that

obtained by the Runge-Kutta method at time

tn + i is then used as a criterion. This pro-

cedure is relatively simple and inexpensive, but

there is no mathematical justification for it.

Any decision to change the step-size based on it

might be erroneous.

Other single step methods include several

attributable to Heun, the improved polygon or

Euler-Cauchy method, and a method employed

by C. Bowie and incorporated in many Martin

programs. Bowie's method is outlined below.

x0 = f0

Y0 = go

h

:}h/2 = x0 + 20

:_h/2 --% + 5'oh

h 2

Xh/2 = Xo + Xo _ + Xo --_

Yh/2 = Y0 + Y0 h h 22-+ _;o -_

:}h = x0 + x0 h

Yh = Yo + _"o h

h 2

Xh = x0+ )}0 h+ _¢0 -2--

h 2
Yh : YO + YO h + YO -2-

Step A

Xh/2 = fh/2' Yh/2 = gh/2' "Xh = fh' Yh = gh

Xh/2 :x0+h4 {5 x0 + 8Xh/2 - _h}

=Y0+ Y0+8 }

h2 (7 x'0 + 6 - Xh)Xh/2 = x0 + _}0 _ + _ Xh/2

h2 (7 o +6' -'Yh)Yh/2 = Y0 + Y0 _ + 9"_ Yh/2

Xh =x0+_{x'0+ 4k'h/2+Xh}
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h 2

x h = x 0 + x 0 h + -_-{X'o + 2 _{h/2t

Yh :Yo +.yoh+_ Yo +2yh/2

Step B

Xh/2 = fh/2" Yh/2 = gh/2' _h = fh' Yh = gh

:}h = :_0+ _ {Xo + 4_h/2+ _h}

h ..

*h=Y0+ {Y0+4Yh/2+Yh}

h2{ }Xh = Xo + Xo h + -6¢- Xo + 2 Xh/2

h2{ }Yh : Y0 + Y0 h+ y Y0 + 2 Yh/2

If the functions f, g do not actually involve x,

it is clear that Xh/2, Yh/2, need never be com-

puted and that Xh' Yh need only be computed at

the point they occur for the last time in the above
list.

It will be noted that the process as described

above involves two iterations and requires that

the functions f, g be evaluated five times. If

further iterations are desired, one simply goes

back to the point marked "A" when he completes

all the steps of the preceding page. Note that

Steps "A" and "B" are identical, though the

formulas immediately following them are not.

If the number of iterations are continued un-

til there is no (sensible) change, the solution is
exact on the assumption that "_ and y vary quad-

ratically over each interval. Since this assump-

tion is exactly realized only in trivial cases (for

which it would be unreasonable to use any step-

wise method), the optimum procedure seems to

be to do only the two iterations as the list of

steps implies. Put another way: when the over-

all accuracy is not sufficient, it is better to
shorten the time interval than to increase the

number of iterations beyond two per interval.

2. Fourth Order Multistep Prediction-Correct
Method

Of this type, for a first order system y' =

f(t, y) are the Milne and Adams-Moulton methods.
The Milne formulas are:

y(P)
4h .

+  2Yn 1n+l = Yn - 3 - -

+ _ h 5 yV (_)

(c)
Yn+l = Yn-I +_ (Yn+ 1

h 5 v

-go-Y (_)

+ _2)

+ % + Yn-1)
(20)

and the Adams-Moulton formulas are

_(P) , 1 -_ 37Y'n _n+l = Yn +_-4 (55Yn - 59y a- 2

% ÷ hSyV

(°) -%Yn+l = Yn + (9Yn+ 1 + 19Yn+ i - 1

+Ya-2)-4ghSyv

, (21)

For these methods, as well as for all multi-

step methods, special formulas must be used to

obtain starting values at the beginning of the in-

tegration and wherever it is desired to double or

halve. A Runge-Kutta method is the most con-

venient for obtaining these starting values. The
difference between the predicted and corrected

values provides a good estimate of the local
truncation error and this estimate can then be
used to decide on whether to increase or reduce

the step-size.

The Milne method has a somewhat smaller

local truncation error, but for some equations it

may be unstable (i.e., errors introduced into

the computation will grow exponentially) and,

while some techniques have been suggested to
eliminate this instability, it is probably advisable
to avoid the use of the Milne method.

The Adams-Moulton formulas are uncondi-

tionally stable and lead to a fast and reasonably

accurate method. Its principal disadvantage is
its low order of accuracy which restricts the

integration step-size.

3. Higher Order Multistep Methods

Variation-of-parameter methods lead to

systems of equations which are essentially first-
order in form as contrasted to Cowell and Encke

methods which lead to systems of second order

equations. For second order systems, special
integration methods are available.

Before considering these, the Adams back-

ward difference method applicable to first

order systems must be mentioned. If the sys-

tem has the form y' = f(t, y), the Adams
formulas are

N

Yn+l = Yn + h _ a_vk f (22)

k=O n

where k is the backward difference operator

defined by

Vkfn = vk-lfn - _Tk-lfn-l; VOfn = fn

The first few values ofc_ k are (1, 1/2, 5/12,

3/8, 251/720, 95/288)for k = 0, 1, 2, 3, 4, 5.

If Nth differences are retained, the principal

part of the local truncation error is 0(hN+2).

If Nth differences are retained, then N + 1

consecutive values of Yi must be available, and
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thesemustbesuppliedbysomeindependent
method.ThisAdamsformulais of theopen
typeand,therefore,notasaccurateasaclosed
typeformulaof thesameorderwouldbe. How-
ever, it involvesonlyonederivativeevaluation
perstepandthis, combinedwiththesmaller
truncationerror, leadsto averyfast, stable
integrationmethodfor first ordersystems.

TheAdamsmethodcanbemodifiedfor
secondordersystems.Thus,if thesystemto
besolvedhastheformy" d2y = f(t, y, y'),

the method consists of applying the formulas

N

y +l +h k0  kfn }
N (23)

Yn+l = Yn + h Yn + h2 _ _3k vkf n

k=0

The first six values of a k are the same as those

given above, while the first six values of _k are

(1/2, 1/6, 1/8, 19/180, 3/32, 863/10080).

In contrast to the straight use of differences

as exemplified by the Adams method the Gauss-
Jackson method makes use of a summation

process. The formulas may be expressed in
terms of differences or in terms of ordinates.

In ordinate form, predicted values for y at time

t = t n are given by the equations

n-1 "

k=0

n-1

k=l

(24)

where the first sums 'fn-i/2 and the second

sums "f are defined by the recurrence relations
n

'fn-i/2 = fn-I + 'fn-3/2
(25)

J,,f = "f
n 'fn-i/2 + n-l"

Using these predicted values, Yn" d/dt(Yn)' and

the attractions f may be computed from the
n

equations. The following corrector formulas
can then be used to obtain improved values for

Yn' d/dt(Yn)

n

c h2(fo Zclfk)Yn

k=l

n

h(fnl )
k=l

(26)

1 d 1, depend upon
The coefficients c k, d k, c k,

the number of differences retained. For n = 11,

the coefficients are given in Ref. 10. With a

single precision machine, it is recommended

that eight differences be retained in these for-

mulas. The starting values as well as the first
and second sums must be supplied by an in-

dependent method. The difference between the

predicted and corrected values can be used to
decide whether to double or halve the step-size.

A convenient method for starting or changing the

step-size is the Runge-Kutta method, but, since
this is a lower order method, several Runge-

Kutta steps will have to be taken for each Gauss-

Jackson step,

The Gauss-Jackson second-sum method is

strongly recommended for use in either Encke

or Cowellprograms. For comparable accuracy,

it will allow step-sizes larger by factors of four

or more than any of the fourth order methods.

The overall savings in computing time will not

be nearly so large, however, because per step

computing time is somewhat greater and because

the procedure for starting and changing the in-

terval is quite expensive. As compared with

unsummea methods of comparable accuracy, the

Gauss-Jackson method has the very important

advantage that roundoff error growth is inhibited.

It can be shown that, in unsummed methods

roundoff error growth is proportional to N 3/2

where N is the number of integration steps com-

pared with N I/2 for summed methods. The

Gauss-Jackson method is particularly suitable

on orbits where infrequent changes in the step-

size are necessary. Frequent changes in the

step-size will result not only in increased com-

puting time but in decreased accuracy as well.

Finally mentioned is a higher order method,
associated with the name of Obrechkoff, which

makes use of higher derivatives. A two-point

predictor-corrector version as applied to a first

order systemy' = f(t, y) makes use of the for-
mulas

(p) +2h %1) (%n+l = Yn-1

.... 3Ynl)+ 7 "1) +-n (TYnYn - -

13h 7 vii

+_Y (_)

Yn+l = Yn + n+l + Yn -IlY n+l - y

h 4 ,,, ,,," h 7 vii

+-I-20 (Yn+l +Yn)--I-0O:"8"ff0 y (_

where the higher order primes mean the higher

order derivative of y with respect to t. The dis-

advantage of this method is that the higher deriv-
atives of the dependent variable must be available.

Thus, to use these formulas, the first order sys-

tem would have to be differentiated two times.

>(27)
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Moreover,astheforcetermsin theequationsof
motionchange,thesehigherderivativeswill also
haw;to bechanged.Thus,inspiteof thefavorable
trulB:ationerror', this methodcannotberecom-
mendedasageneralpUrllOSCsubroutinefor space
trajectorycompulations,t[owcver,themethod
appearsclearlytailorcdt/) thelunartrajectory
problen_(Rcf. 1l).

4. SpecialSecondOrderEqualionsof theForm
_-" = f(K:_4

The free-flight equations in the absence of

thrust or drag forces can be written in the form

y" = fit, y) with fnissinK first derivative terms.

Some formulas which take advantage of this fornl

have been proposed. The following special

Rungc-Kutta method, for examf/le , i't_qtl[l'eH Olllv

three derivativc evaluations per step :ulll, thus,

results in a saving of about 25 Ilerccnl ovcY the

standard Runge-Kutta formulas:

k 1 = hf(tn, Yn } -'

(t h h , h )= + Yn + +k 2 hf n 2-' 2 Yn 8 kl

k 3 = hf n+ h, Yn + h'Yr[ + 2k2 (28)

Yn+l = Yn + h [Yn* 1/6 (kl + 2k2) ]

Y/I+I = Yn + 1/6 (k 1 + 4k 2 + k3).

A predictor-corrector method (due to Milnc

and Stormcr) adapted to ibis form Hlakcs use of
the formulas

YPl =Yn+Yn_2 -Yn_3+ @ (5fn+ 2fn_ll

TA BLE 1

17h 6 vi (_)
5fn-2) + "2-4U- y

c h 2
Yn+I = 2"Yn - Yn-1 + 1-2- (fn+l + 10fn + fn-1

(29)

h 6 vi

-2--4-0- 5' (n).

J

These formulas appear to achieve a local trhm-

cation error of 0(h 6) while retaining only four

ordinates° corollated with an 0(tn 5) error for

i)llner ff)mqh order methods, t[owever, this

advantage is illusory since the overall error is

still 0(h 4) as in fourth order methods. In ait-

(tition these formulas are somewhat unstable rel-

ative to roundoff error propagation. In practice
/here al)l)ears to be little to recommend the Milne-

Stormer method.

The characteristics of these various integra-
tion routines are summarized in Table 1.

5. Evaluation of Integration Methods

The more important integration methods in

general usage will be evaluated below as they

arc utilized wiih the various special iler_urbation
form ulations.

a. Cowell melhocl

For the Cowell method, the choice of an in-

tegrating routine is very important because of

the greater danger of loss of significance due to
roundoff error accumulation. The Gauss-

Comparison Criteria

Ease of

Method of Nu0aerical Truncation Changing

Integration Error Step -Size Speed

Single Step Methods

Runge -Kutta h 5 * Slow Stable

Runge-Kutta Gill h 5 * Slow Stable

Bowie h3 Trivial Fast Stable

(step -size

varied by

error con-

trol)

Fourth Order Multistep

Predictor -correetor

Milne h 5 Excellent Very fast Unstable

Adams-Mouhon h 5 Excellent Very fast Unconditionally

stable

Higher Order Multistep

Adams Backward Arbitrary Good Very fast Moderately

Difference stable

Gauss-Jackson** Arbitrary Awkward and Fast Stable

expensive

Obrechkoff h 7 Excellent *** Stable

Special Second Order

I Equations [y" = f(t, yl]

Spe eial Runge _Katta 1] 5 * Slow Stable

Milne -Stormer h 6 Exeellenl Very fast Moderately

stable

Roundoff Error

Stabilily Accumulation

Satisfactory

Satisfactory

Satisfactory

Poor

Satisfactory

Satisfactory

ExeeHent

Satisfactory

Satisfactory

Poor

*R K (single st( t ) trlvial to change steps, very difficult to determine proper size.

'_'_Grluss da( kson is for second order equations,

*""Spied [ff Obr( (hkaff depends on complexity of the higher order derivatives required;

it cuuld ht v(ry fast,
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Jackson method of integration is recommended

for Cowell programs because it allows larger

step-sizes and because it inhibits roundoff error

growth.

b. Encke method

For the Encke method, the choice of an in-

tegration method is less important relative to

accuracy. There is some advantage in computing

time, however, in choosing a single step method

which will allow frequent changes in step-size

without the necessity of going through an expen-

sive restart procedure. For lunar flights, it
has been found that the Obreehkoff method is es-

pecially useful in reducing computing time, but

this method does not appear to be easily adaptable

to other types of orbits or to other formulations.

Although the Gauss-Jackson method is recom-

mended in Encke programs, its advantages over

other methods are not as great as in Cowell pro-

grams.

c. Variation-of-parameters method

For variation-of -parameters methods, the
Adams backward difference formulas are re-

commended among higher order methods and the
Adams-Moulton formulas among lower order
methods.

In general, multistep integration methods
which allow for automatic adjustment of the size

based on an error criterion are preferred.

With any integration method, the process of

double precision accumulation of the dependent

variables should be used to prevent excessive

roundoff error growth.

6. Summary of Studies on Special Perturbation
Methods

In order to provide the mission analyst with a

set of guide lines in determining the best integra-

tion methods for various special perturbation
methods used in computing precise satellite tra-

jectories, it is useful to examine the results ob-

tained by others in the industry. This section is
intended to show the interrelation of the mission,

formulation of the problem, and method of inte-

gration so that the most efficient, accurate, and
economical balance is achieved. Several serious

questions, which must be carefully considered

by the mission analyst, are raised in connection

with the balance between the type of orbit and the

scheme of integration.

a. Aeronutronic report (Refs. 12 and 13)

The Cowell, Encke and Herrick methods are

compared for the following problems: a selenoidal

satellite which is physically unstable, but for

which an analytic solution is known; a low thrust

trajectory; a high thrust trajectory and a ballistic

lunar trajectory. In all cases the integration is

carried out with a Runge-Kutta method with

variable step-size adjustment. Their conclusions
are:

(i)

(2)

For the Cowell method, the effect of

roundoff error is felt very quickly--

within a few hundred steps.

Overall, the Encke and Herrick

methods are computationally more
efficient than the Cowell method.

(3) On ballistic lunar trajectories, the
Encke method is best. The Cowell

method requires almost ten times as

many integrating steps as the Encke

method and three times as many as
the Herriek method.

(4)

(5)

On continuous low thrust trajectories,

the Herrick method is superior.

On trajectories where high thrust
corrective maneuvers are introduced,

the Cowell method is superior.

Although the trend of the conclusions in this

study is probably correct, there are serious

questions as to the vaIidity of the conclusions on

the degree of superiority of the perturbation

methods. For one thing the method of integra-

tion (Runge-Kutta) favors the perturbation meth-
od. For the Cowell method, the choice of in-

tegration method is much more important, as
indicated earlier. Experience has shown that

roundoff error effects are not nearly so critical
as concluded here. Both the use of the Gauss-

Jackson integration method and double precision
accumulation make roundoff error much less

serious for the Cowell method than indicated

here. The evidence presented, moreover, is

not conclusive relative to accuracy. The nu-

merical results, for example, are not given at

corresponding times, and no accurate standard

for comparison is available except for the un-
stable selenoidal satellite. The selenoidal sate/-

lite is by no means typical of the earth satellite

problems and any generalizations of results

based on a study of this orbit must certainly be

viewed with skepticism.

b. Republic Aviation report (Ref. 14)

The orbit selected is that of a vehicle moving

in the gravitational field of two fixed centers.

An analytic solution in terms of elliptic functions
is available for this orbit so that an accurate

standard is thus available. This study compares
the Encke, Cowell and Herriek methods with two

different integration routines: a fourth order

Runge-Kutta method and a sixth order Adams
method. The conclusions of this study are:

(i) The Encke method was superior to the

others in both accuracy and machine

time. For an integration over a 100-
hr period the Encke method required
0.5 min, the Herrick method 2.5 rain

and the Cowell method 3.5 rain. All

of those programs used the same in-

tegration method and the results were

comparable as to accuracy.

(2) The Herrick method is superior to the
Cowell method relative to attainable
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(3)

(4)

(5)

(6)

accuracy and slightly better relative

to computing time.

An integral of the motion, such as

the energy integral or a component

of the angular momentum, is a poor

positive test of accuracy.

The Adams method is considerably
faster than the Runge-Kutta method

by a factor of almost three.

Double precision accumulation is

very effective in reducing errors
due to roundoff.

The largest error in the Encke and
Herrick methods arises from errors

in solving the two-body formulas,

particularly as such errors affect the

mean anomaly calculation.

The conclusions of this study appear to be

well grounded. The only serious consideration

is that the orbit selected is quite specialized

and that no strong perturbations such as those

due to oblateness or thrust are considered. Thus
the extent to which these results can be assumed

typical for satellite orbits is in some doubt.

c. Experiments at STL

The relative efficiency of the special per-

turbation methods is a function of (1) the type of

orbit and (2) the method of integration. A given

integration subroutine may favor one of the
methods over another, so that the use of the
same subroutine for all methods does not con-

stitute a fair test.

In general there appears to be no doubt that

the Encke method is computationaIly the most

efficient on ballistic lunar trajectories. For

comparable accuracy, however, the advantage

in computing time is probably on the order of
two or three, rather than ten as is sometimes

quoted, when any of the standard integration
subroutines are used.

There is no doubt that the Cowell method

requires much greater care to ensure that
roundoff errors do not become a serious factor

in the accuracy. However, effective methods

are available to curb roundoff error growth.
When these are used, the Cowell method is still

a very useful tool for many space computations.

None of the orbits considered in tile reports

by Aeronutrontc and Republic Aviation appear

to be applicable to the earth satellite problem in

which a small but significant force, such as that

of oblateness, is continuously appiied.

To obtain information about the comparative

performance of these special perturbation meth-

ods on earth satellite orbits, a numerical study

was recently completed at STL. An idealized

orbit was selected for the study with initial ele-
ments:

a = 1.5 earth radii

e

i

_2

period of the un-
perturbed orbit

perigee distance

apogee distance

= 0.2

= 45 °

= _o =Mo=O

= 155 rain

= 800 mi

= 3200 mi

The only perturbation force considered was that

due to the second harmonic in the earth's gra-

vitational potential (J2). An accurate standard

against which to check the programs was pro-

vided by a double precision Cowell program.

The double precision program yielded results

on the unperturbed orbit (J2 = 0) which agreed

with the known analytic solution to a few digits

in the eighth significant figure. For the per-

turbed orbit, the results provided by the standard

are correct to at least seven significant figures.

Single precision floating point programs for
the Cowell. Encke and Herrick methods were run

on an IBM 7090 and compared with the double

precision standard. Great care was used to en-

sure that all physical constants and initial con-

ditions were identical in all programs. The in-
tegration was performed over 64 revolutions

with output at 20-rain intervals. Table 2 gives
the method of integration used, the local trunca-

tion error criterion, the number of integration
steps required, the computing time for 64 revo-
lutions, and the maximum error in the distance

Ar over the 64 revolutions. For each method

several runs were made with successively
tighter error criteria, and the most accurate of

these was selected for the comparison. While
the Cowell method required almost twice as

many integrating steps, overall computing time
was only slightIy greater than the Encke method

and, moreover, the accuracy was somewhat bet-

ter. The Herriek method gave the best accuracy.

The relatively large computing time required
by the Herrick method is partially accounted for

by the fact that the Adams-Mouiton formulas
(fourth order) are of lower order than the Gauss-

Jackson formulas (sixth order). Since the latter

will allow integrating steps perhaps twice as

large for the same accuracy, the adjusted com-

puted time would be comparable to that for the
Cowell method.

A more detailed comparison of achievable

accuracy is contained in Table 3 where the maxi-

mum errors in the distance r, the mean anomaly

M, the semimajor axis a, and energy integral E
are given on the 20th, 40th and 64th revolutions.

It is clear that the Herrick method consistently
yields the most accurate results and the Encke

method yields the worst results. For all meth-

ods, there is a strong correlation between mean

anomaly errors and position errors, indicating

that the error is largely along the path of the
motion. This conclusion also follows from the

energy integral errors which are seen to be rela-

tively constant and much smaller than the position

errors. It may also be concluded that the con-

stancy of the energy integral is a poor positive

test of accuracy in the position coordinates. The
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TABLE 2

Numerical Results--Special Perturbation Methods

Formulation

Cowell

Encke

Herrick

Method of

Integration

Gauss -Jackson

Gauss -Jackson

Adams -Moulton

Error

Criterion

1 x 10 -10

7 x 10 -10

5 x 10 -10

Number of

Steps

10,200

6395

7000

Computing
Time

(rain)

5.75

5.31

11.45

Maximum Ar

(ft)

800

1700

400

TABLE 3

Maximum Error--Special Perturbation Methods

Method

Revolution

Ar x 10 6

(er)

AM x 103

(deg)

Aa x 107

(er)

AE x 109

er

Cowell Encke Herrick

20 40 64 20 40 64 20 40 64

1.2 2.2 4,0

0.3 0.6 l

1.6 1.4 1

1 1 1

2.2 6 8.4

1 2 2.7

3 3.5 3

4 6 9

0.2 0.8 2

0. I 0.2 0.6

2.2 2.2 2.2

2 2 2

error in the semimajor axis is also seen to be

smaller than the position errors, indicating that
the geometry of the orbit is much more accurately

determined than position in the orbit.

Although these results show that the Herrick
method yields the most accurate results and the

Encke method takes the least computing time, the
order of magnitude of the difference is not suffi-

cient to lead to a clear preference for any one
method. Some improvement in the Encke and

Herrick results could probably be obtained by

even more careful analysis of the two-body
formula computations. The Encke method, for

example, is quite sensitive to the frequency of

rectification and some improvement might be
obtained by experimenting with rectification.

There appears to be little reason to prefer

either the Encke or the Herrick methods on

earth satellite orbits of moderate eccentricity

particularly, since they are considerably more

complicated and require much more careful

numerical analysis. In addition, special difficul-

ties will arise in limiting type orbits (low eccen-

tricity, high eccentricity, critical inclination)

which do not arise when the Cowell method is

used.

D. GENERAL PERTURBATIONS

Chapter Ill presented the discussion of motion

about point mass (or a spherically symmetric

mass). Although that discussion is revealing, it

does not in general constitute a solution to the

problem because the assumptions utilized prevent

the solution from behaving as it should for the

true gravitational field. In the preceding sections

of this chapter, discussions have been presented

which circumvent these limitations; however,

in the process much generality has been lost since

nothing can be said for trajectories beyond the

neighborhood of the numerically obtained trajec-

tory and nothing can be said about the long-term

behavior of the orbit. (Before proceeding, it

must be added in defense of numerical integra-

tion that the solutions thus obtained are valid to a

very high order of approximation.) For these

reasons it is desired that analytic expressions be

presented which can be utilized to describe the

motion of a satellite to varying orders of approxi-

mation. The approach taken here will be first to

discuss the variation of the orbital elements and

secondly, the first order secular or cumulative

perturbations which can be added as linear func-

tions of time or as discrete corrections to the two-

body solution to improve the fit of the resulting

motion. Then as a third step, the various general

perturbation theories (i.e., approximate analytic
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solutions for the perturbed motion obtained by
series expansion) which present second order

secular and periodic effects will be discussed.

The advantages and disadvantages of this ap-

proach are summarized at this point.

Advantages of general perturbation methods
are:

(i) They arc very fast both because no

step-by-step integration is necessary

to obtain the elements at a given time

and beeause the computing time per

point is very small (on the order of

1 sec per point on an IBM 704).

(2) The accuracy of the computation is

limited only by tile order" to which the

expansion is carried out, and not by
the accumulation of roundoff and trun-
cation errors.

(3) They can maintain reasonal)le accuracy

over many hundreds of revolutions.

(4) They allow for a clearer interpret<t-

tion of the sources of the perturbs-

tion forces anti the qualilativc nature
of an orbit.

I)isadvantagcs of general perturllation meth-
ods are :

(i) Nonconservativc forces, such as drag,

are nol easily included in the theory.

No simple and adequate theory has yet
been prepared which inc.ludes such
forces in a form suital)le for numerical

computation.

(2) The effect of other forces, such as

luni-solar perturbations and radiation

pressure, are difficult to incorporate

since they involve, substantial amounts

of new analysis and checkout.

(3) The series expansions arc; very com-

plicated, and programs based upon
lhem are complicated to write and

difficull to check out even for a first

order tlmory.

(4) There is a serious degradation in ac-

curacy for special types of orbits in-

eluding the important case of nearly

circular orbits (e _ 0), highly ellipti-
cal orbits (e - 1) anti orbils near tilt!

crilical inclination (i -- 63.4_).

Although agreement with observations

does confirm practical convergence,

tit) malhematical proof of convergence

has yet been given for any of the

general perturbation melhods, nor tire

any eslimates of the CFFOF in the trun-
cated series available.

Finally, these discussions will be followed by

those of atmospheric effects and extt'a-ter-
restrial effects,

1. Rates of Change of Satellite Orbital Elements
Caused by a Perturbing Force }-('R_-_--

The instantaneous rates of change of satellite
orbital elemenls caused I)y a perturbing force,

as given, for example, by Mou]ton (Ref. 1, pp
404 and 405) are derived from astronomical

perturbation theory involving tedious mathemati-

cal transformations. The purpose of this de-

velopment is to give a simplifh,d derivatfon of

the same equations by using only elementary

principles of mechanics. It is hoped Ihat this

approach will make the equations more meaning-
ful and the discussions which follow later in lile

thai)tot more readily appreciated.

Consider a satellite of mass m moving in the

inverse square force field of the earlh. Its or-

[)it is a Kepler ellipse (Rcf. l, Chapter V)

specified by the following orbital elements a, e,

h, w, i and M 0 (see following sketch). The

location of tile satellite in its orbit is given I)y

lhe angular position c? which is mectsured in l}le

orbital plane from the node. The angular dis

lance of the satellite from perigee is callcd _hc

true anomaly, O. Therefore,

0 = w + 0 (30)

The radial distance, r, from the eenler of the

earth to the satellite is given by

})

r - i + e cos 0 " (31)

The satellite's energy per unit mass, _, and its

angular momentum per unit mass, h, arc related

to the orbital elements by tile equations

u (32)

and

2 _q e 2
h = r 2 6 = _ : na - (33)

where: _t = GM (the product of tile gravitational
constant and the earth's mass) and a dot over a

quantity indicates a time rate and

,/-77--,

n = _9" (34)

Now suppose that a perturbing force F acts on
the satellite. The orbit will no longer be a Kepler

ellipse, but at every instant we can associate an

"instantaneous osculating ellipse" with the new

orbit by choosing the Kepler orbit corresponding

1o the instantaneous radius and velocity vectors

of the satellite and to the potential energy, - _y,
of the satellite in the gravitational fieht of the

spherical earth. This is the orbit Ihe satellite

wouht follow if the perturbing force were re-
moved at that instant. The true orbit can thus

be specified completely by a series of elements

of t}w instantaneous osculating ellipse. There-

fore, the set of ctifferential equations which shows

how these elements change with time is equivalent
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Z-axis

h

Vernal
equinox

Node

Perigee

to tile Newton or LaGrange set involving the co-

ordinates and their rate of change with time.

With this discussion as background, the rates of
change of the orbital elements a, e, _.2, w and i
will now be derived.

Following Moulton (Ref. 1, p 402), the per-

turbing acceleration, F_/m, may be resolved into

a component R aiong the radius vector (meas-

ured positive away from the center of the earth),

a transverse component S in the instantaneous

plane of the orbit (measured positive when

making an angle less than 90 deg with the velocity

vector V), and a component W normal to the in-

stantaneous plane (measured positive when

making an angle less than 90 (leg with the north
pole or z-axis).

Let the unit vectors along _he three direc-

tions be denoted by n r, n's and n_w. That is,

= m(Rn' + Sn + Wn ). (:35)
1' S W

To find the rate of change of the semimajor

axis, a, refer to Eq (32) for the relationship to

the energy

da 2a 2 (Ic

aY- = _ Ft " (:_)

The energy change (pet" unit mass) rnay be found
from the definition of the work clone on the satel-

lite by the perturbing force.

dc F
_{-= -_ . V (37)

where V is the instantaneous velocity vector,

(<)_ = _.nr.+r6n;=_ dr .(TO- nr'rr *
(38)

Now from the definition of the instantaneous os-

culatinff ellipse, it is cleat' that its velocity

vector is the same as the instantaneous velocity
dr

vector of the actual orbit. Therefore () and cT0-

in Eq (38) may be evaluated from Eqs (31) and
(33) to obtain

)V = na - -` re sin 0 _ _ . (39)
---_-- T_-_-_O nr + rns

r

Forming the dot product with F/m anl substi-
tie

luting the resulting expression for _ in Eq (36)
.yields

(ta 2(.' sin 0 2a J--f1 -e 2
- t1 +

dt _11 2 nrn - e

S (40)

da
which is the exl)ress[on given for _ by Moulton
(Ref. 16).
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Toderivethechangesin theotherorbital
elements,it is necessaryto knowtherateat
whichtileangularmomentumvectorh (perunit
mass)changes.Thisrateof changeofh is then
knownto beequalto thesummationoftheex-
ternalmomentsactingonthesatellite.

__dh=__1(/x F)
dt m

x (Rn + Sn + Wn w) (41)= rnr r S

-4 -4

= rSn - rWn
W S

The rate of change of h can also be written as

dh dh _ da -_

d_-: d_- nw + h _- n s (42)

where do is the angle through which the angular
momentum vector is rotated in time dt. There-

fore,

dh_
rS (43)

dt

and

do rW
d-T- = - h-" (44)

Now, the eccentricity of tile orbit may be ex-
pressed in terms of a and h through Eqs (33) and
(34) which yield

(1 1t2e = ua/ = (1 pta) 112

By differentiating, the following is obtained

de

_l_ -= - h(dh hda)
C*o2(dh  2da)
2na-_2--_e 2 _--na -e _ .

(45)

dh
Upon substituting Eqs (40) and (43)for _- and
da
d_-' Eq (45) takes the final form,

at-de _i-e2 sin 0 R+ _1-e2ta2(_-e2): na --_2-_ r] S.

na e (46)

The motion of the node is the same as the

motion of the projection of h'on the equatorial

plane (see the following sketch). Let the sub-

script p denote the projection of any vector on

the equatorial plane. Then it can be seen that

Z-axis

_Tp- x\ dt /
P

h

I
I
I
I
I

I
I
I
I
I
I h

/

X-axis

Node

\

\
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7
P

-4

= projection of h on the equatorial

plane.

--4

dh
= projection of _ on the equatorial

plane.

(dh) = the component of (d_)Hi- P P

which is normal to h .
P

d_
Ihp

_ P
h

P
(47)

(h nD.
=

h 2
P

But

A

h = h sin i (_ sin _ - j cos _)
P

where @ and j are unit vectors along the X- and

y-axes, respectively, and

= rW ['_'(-cos ¢ cos i sinf_

- sin 0_ cos p) +j (-sin ¢ sin

+ cos qb coo i cos _)].

Thus, upon performing the cross product, Eq

(47) becomes

dr2 _ rW sin 6

dt 2 _1 2na - e sin i

(48)

The change in the orbital inclination is re-

lated to the change in the node. This can be

seen by referring to the following sketch in which

two positions of the node, f_0 and 91 , are shown
with

A_2 = [21 - f?0

and

/',i = i 1 - i 0.

By sphericai trigonometry, it can be shown that

sinai = sin i 1 cos i 0 - sin i 0 cos i 1

_ sin i 0 [cos i 0 sin #0 (1 - cos af2)
sin #1

+ cos _0 sin Af2].

Z-axis

co0_

X axis 0

xis

_D
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Differentiatingandtakingthelimit asA_2
_0,thefollowingis obtained

di _ sin i d_2

sine cos ¢ _{-.
(49)

Therefore,

di = rW cos cb (50)

2 _71 e 2
na

The change in the argument of perigee, ca,
arises from two sources. One is the motion of

perigee caused by the forces in the orbital plane

tending to rotate the ellipse in its plane. The

other change occurs because co is measured

from the moving node (see preceding sketch).

To evaluate the latter changes, assume that the

in-plane perturbing forces are zero. Then the

change in co equals the change in ¢. According
to the relations in a spherical triangle,

cos q_l = cos Af2 cos ¢0 + sin_2 sin _0 cos iO.

Differentiating and taking the limit as A[2 _ O,

yields

(__) . d_ -r sin cb cot i W,dq_ = = - cos t _-- = 2 2
W na _/7 - e

(51)

where the subscript W means that this is the

change in co contributed by the nodal motion

which is caused by the component of the per

turbing acceleration, W, normal to the orbital

plane. The change caused by tile in-plane corn-

ponents, R and S, is denoted by [dco_ The
\_]a, s"

effect of these in-plane forces is to change the

instantaneous velocity vector which must, at

every instant, remain tangent to the instantaneous

osculating ellipse. This ellipse will therefore

have a changing perigee position. The resulting

rate of change of the argument of perigee will

clearly be

= d0R, S a_- " (52)

d0
Here aT' the rate of change of the true anomaly

caused by *.he perturbing force, must not be con-

fused with @ which is the rate of change of @ in

an unperturbed Kepler orbit. To evaluate d0
dt '

refer to the following sketch.

-4 --_

After the force m {Rn r + Sn s) has been ap-

plied for the time dr, the velocity vector is

changed from _?" to _F+ d:_, the true anoma_

from O to 0 + d0 and the angle y, between n s
-4

and V, is changed from y to y + d-/. The ex-

pression for y is obtained from the angular
momentum,

h = rV cos _.

Since h r2O and V (_2 + r 2 _2) I/2= = , it follows

that

cos y = 1 +

r

dr

Computing _ from Eq (31) yields

dV V+dV

- (Rn
r

\

+ Sn s)

Sn
_s

/ \

/ \
/ _

_ Nn N

Old perigee

New perigee
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COS _ = 1 + e cos 0 (53)

_1 + e 2 + 2e cos 0

e sin 0 (54)

_1 + e 2 + 2e cos 0

and

sin_ =

Differentiating Eq (54) with respect to time and

using Eq (52), it is found that

l+e2+2ecos0

(_)R,S =[e (e+ hbs 0,

• d-T - (55)
l+e2+2ecos0

If N is the component of the force normal to V,

N dt
d_- V--"

But

N = R cos _/ - S sin _¢,

and

h _]vl + e 2 + 2e cos 0
V = --

r I + e cos 0

Therefore,

d_x =) r(1 + e cos O)

dt }h(1 + e 2 + 2e cos 0)

[R(1 + e cos 0) - (e sin@)S]I (56)

de
Equation (56), along with Eq (46) for j[--. yields

R,S

_i -e 2

nae [-(cos 0) R

(57)

1 ]+ sin 0(i + 1 + e cos O ) S

The total rate of change of the argument of

perigee is

The final element, mean anomaly at epoch,

which provides the position of the satellite at

any time also has a time rate. This relation-

ship is obtained directly from Kepler's equation

cr = M 0 = E - e sin E - nt

and can be found by using the equations already
de dO

obtained for-_ and _- , with the relationship

between E and 0 given by

cos E - e
cos 0 -

1 - e cos E

sin 0
_i 2- e sin E

=

1 - e cos E

The result is

ao_l( )• t- --K_ - _ cos 0 R

(lnae2)[l+a(lr e_ ] (sin0)

dn
-tat (59)

Note is made at this point that the last term has

been omitted in Moulton, Ref. 1, p 405.

This completes the set of equations for the

orbital elements• The remaining 5 are sum-
marized below for reference:

da 2e sin 0 R + 2a %/71 - e 2 S

_'- = n%Fl _ e E-- nr

de _ _ - e 2 sin O
R

dt na

na e

S

dr2 r sin ¢} W

2_ 2na 1 - e sin i

di _ r cos ¢ W
dt

2_1 e 2
na

dco _ r sin ¢ cot i W "/--?1 - e 2 cos 0
dt

2 _ 2 nae
na _i - e

R

_/-e 2 1

+ (1+ )sin0nae i + e cos 0 S._

(60)

If at this point we introduce a disturbing

function rather than the four components, we can

put these equations in the Lagrangian form

R- KF

i s_

W- r sln_- _i-

(61)
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da 2 d
=

ded-i- = ----2-- -e
na e

dw _I - e 2 o_

d-i- = _ o--6
cot i 0w

2 _ 2 )ina i - e
na e

dM 2 o: 1 - e 2 3_
---- = - - d- n

dt na da _ Jc
na e

di cos i 3

dt
2 ._ 2

na _1 - e sin i

d_.2 1 3 w

M 2 ./- 2
na _1 - e sin i

>(62)

2. First Order Secular Perturbations

For an oblate body having axial symmetry,
the gravitational potential at any extension point

may be represented by Vintirs potential

(Chapter II). If for tile present analysis we

neglect terms with coefficients the order of
9

J2" (i.e., J3' J4"'" ) we can write the work

function (minus the potential) as:

[, ]: _ + (3 sin 2 L - l)u F -E
(63)

= r 1 + _- {3 sin i sin % -i)

but since % = 0 + c_ is a periodic quantity, sin 2 qa
l i i

=-_ - -_ cos 2© has a nonperiodic part _.

Thus, the potential ,I will produce secular changes
in the orbital elements as well as periodic

changes. Before the magnitude of this change

can be evaluated, however, the constant part of

the function (a/r) 3 must be evaluated. Following
the method of Dr. Krause (l_ef. 16) we have:

= -2- + C1 cos M + C 2 cos 2M +

• . . + c cos n M
n

where

(F n
1 2_ a ) cos n M d M

en = _-" 0

The C n are simple functions of the eccentricity

as may be seen in the expansions of Chapter III,

Thus,

C o ,_2_r a

1 ,I_27
0

dM

27r

i -3/2
2_ (1 - e 2) l"

,!0
(1 + e cosO) dO

= (i - e2) 3/2

and

= _ + v< (64)U F secular

-_secular =_ [ J2 q (1-e2)-3/2a'

-1

(i - 3/2 sin 2 i) I

(65)

-J

At this point we refer to the Im_rangian

equations of Section D-1 of this chapter and con-
elude that the secular variations in the elements

are expressible to the first order in J2 as:

/x a : 0 (66)

A e = 0 (67)

Aw = 37r J2 ]7 (2 - 5/2 sin 2 i) (rad/rev)

n_ 72- J2 f7 _II - e 2 (1 - 3/2 sin 2 i)

(tad/roy) (69)

a i = 0 (70)

(.)'9 = - 3¢ d 2 -_ cos i (rad/rev) (71)

The physical significance for the fact that the

secular variations in a, e and i are zero may be
seen by looking at the potential function itself.

The fact that J2' J3 and J4 are small implies that

to a first approximation the orbit will be nearly

elliptical. Although one cannot assign an un-

ambiguous major axis or eccentricity to the per-
turbed satellite orbit, the experience of astrono-

mers has shown that it is convenient to refer the

motion to an osculating ellipse. This is the
orbit in which the sateliite would move if at some

instant the perturbing terms were to vanish (J2 =

J3 = J4 = 0) leaving the satellite under the at-

traction of the "spherical" earth. Hence the
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actualpositionandvelocityvectorat eachpoint
definetheosculatingellipsein termsof a set
ofelementsa, e, andi, whereaandeare the
semimajoraxisandeccentricityandi is the
inclinationof theplaneof theellipseto the
equator.

Themajoraxisa maybespecifiedin terms
of theenergyE. associatedwiththeosculating
ellipse. WhenJ2' J3andJ4aresetequalto
zeroto calculateE,onlythepotentialenergyis
altered,andit canbeseenthatunlessr exhibits
asecular(nonperiodic)variation,whichis not
possibleheresincewearedealingwithbound
orbits, onlyperiodicwlriationsin E canoccur.
Hencetherecanbeonlyperiodicvariationsina.

Althoughp, i.e., a(1 - c2), is a constantof
themotion,thetotalangularmomentumhis not
constant,becausetheequatorialbulgeproduces
anonradialcomponentof force. Butbythesame
argumentsasabove,thetorque,andhenceh,
canexhibitonlyperiodicvariations. Further,
sinceat eachequatorialcrossingthemomenta
are relatedby

p = (tlcosi)N =constant.

whereN meansnode,it followsthattheorbit
inclinationi behavessimilariy. Thesamemay
besaidfor theorbit eccentricity,sincethe
equationfor eccentricitydependsexplicitlyonly
on [ hi anda.

It is notedat thispointthatsince3 ofthe6
elementsvary,thesatelliteperiodswill vary.
Theplural ofperiodwasintentionallyutilized
at thispointbecauseof themannerinwhichthree
distinctperiodsaredefined(Ref.17).

Anomalisticperiodis definedasthetime
fromoneperigeeto_e next. In thattimethe
ellipticangles(true, mean,andeccentric
anomaIy)increaseby360 °, while the central
angle i_ increases by more or less than 360 ° ,

depending on whether the apsidal notation is

against or in the direction of satellite motion.

Nodal period, also called synodic or draconic

period, is defiried as the time from one ascending

node to the next. In that time the central angle

increases by 360 ° , since [_ is measured from the

instantaneous position of the ascending node.

The satellite does not, except at an orbit in-

clination of 90 ° , return to the same relative

position in inertial space after one nodal period

due to the regression of the nodes.

Sidereal period is defined as the time for the
satellite to return to the same relative position

in inertial space. In that time the satellite

centraI angle as measured from a fixed reference,

which is not to be confused with the central angle

as measured from the ascending node, increases

by 360 ° . In artificial satellite theory, the sidereal

period is less important than the other two periods,

it is rarely used. and it will not be discussed any
further.

The perturbed anomalistic period can be

evaluated from the average angular rate using
the method of Kozai (Ref. 18) and a relation

2 3
analogous to n a = _.

_2_-3 = _ =, 1 - J2 (1

g sin i)

whe re

n

a

= perturbed mean angular rate

= mean value of the semimajor axis

= a 0 1 - :t/2 J2 (1 - 3/2 sin 2 i)

= effective gravitational constant as

sensed by the satellite in its orbit.

This process yields

,7- =
a

27r = 2___ (a)3/2 xJl

nr

3 J2Re 2 (3c°s2i0-1)}+a 2 (i - e2) 3/_- 8 (72)

For a near-polar orbit the anomalistic period

is ionger than the unperturbed period, while for
a near-equatorial orbit the anomalistic period

is shorter. At inclination angles of i 0 _- 54.7 °
2.

and i0 2 125.3 °, 3 cos t0 = 1, and hence the

anomalistic period equals the unperturbed period.

Physically this is due to a combination of the

mass distribution of the earth and the apsidal

rotation at these inclination angles.

The perturbed nodal period, however, has

been subject to much more confusion since the

results of many of the authors are in conflict.

Upon review of this work, however, it is felt

that to the order J2 the results of King Hete

(Ref. 19) and Struble (f{ef. 20) are the most pre-
ferable for small eccentricities. (Additional

discussions and proofs appear in Ref. 17,) This
result is:

_'n = 2_ I - 3J2

8 (73)

These two period expressions (Eqs 72 and 73) may

be seen to differ in both magnitude and in the

algebraic sign of the corrective term. This
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apparent discrepancy is due to the fact that the

perigee is moving. Thus at the time the perigee

has rotated through 360 ° the number of nodal and

anomalistic periods should differ by i.

Equations (68}, (69), (71), (72) and (73) are

presented in graphical form as Figs. 2. 3, 4,

5 anti 6, respectively.

3. ttigher Order Oblateness Perturbation

The errors inherent in numerical integration
are not conducive to accurate computation of

orbits over long time intervals. For this rea-

son, general perturbations (analytic approxi-

mate solutions for the perturbed motion obtained

by series expansions) are more useful in mis

sions of long duration.

a. Oblateness of the earth

The potential function of the earth can be

aecarately expressed as an infinite series of
zonal harmonics,

U - rp - 2 Jk Pk (sin L

k=2

where Pk (sin L) is the Legendre polynomial

of order k, given by

1 dk )k
Pk ix} - 2k k ' dx k (x 2 - 1

This is the form of the potential function given

by Vinti. The recommended vahes of the co-

efficients Jk and several expansions are given

in Chapter II. The potentiai function determines

the motion of a small body in the earth's field by

x" = _)U__ x-_y, z.
)x

The classic approach of the general perturbations

method is the analytic integration of one of the
sets of equations for variation of parameters,

i.e., a set similar to that of Section C-1 (this

chapter) with the perturbing function - defined by

Z = U --_
r

This approach has been taken by several
authors [Brouwer (f%ef. 21), Kozai (Ref. 18),

Garfinkel (Ref. 22), Izsak (Ref. 23) and K,cause

(Ref. 16) to name a few] . The method results

in easily visualized perturbations since the

variables are geometric quantities. However,

because of a failing peculiar to the method of

analysis, the equations exhibit singularities in

certain elements in the vicinity of the "critical
inclination, " i.e., i = 63.4° and for i = 0 or

e = 0. In the firs{ case a physical explanation
exists in that since the momenta of the canonical

equations are bounded, the system is conditionally

periodic. This situation admits 2 possibilities:

(i) Libration, rain. qi <-qi <-max qi

(i = 1, 2, 3}.

(2) Circulation, -_ < qi < _ "

These two possible regions are shown in the

following sketch.

Libration -_ F Circulation

region \ /region

-- ,--/- .- .

a_ _ _ Element
value

In the neighborhood of the so-called critical in-

clination, the elements which become in-

determinant merely leave the circulation region

and enter the libration region. Since the theory

isn't prepared to handle points of this type along

with the more regular points, it ceases to apply

in this region. This behavior is no reflection

on the theory in general, since other approaches

can be utilized in these neighborhoods.

In the latter cases (i. e., e = 0 or i = 0) the

problem is one of indeterminacy in one or more

of the elements being utilized to describe the

motion. More specifically, the angle c_ cannot
be utilized for e = 0 because of the fact that the

line of apsides cannot be located. Similarly, the

nodai angle t2 becomes meaningless if the plane
of motion is the primary plane of reference.

Special sets of dements have been developed

however, which may be utilized effectively for
very low eccentricity orbit. These sets will not
be discussed.

One set of solutions obtained using this

method including J2 and J4 terms in secular

perturbations, J2 to J5 terms in long period

perturbations and J2 terms in short period

perturbations, is presented below. This form

is exactly analogous to those referenced pre-

viously; however, there are differences in the
notation and in the coefficients

a. Secular terms

_ 1 P t 1+ J2Ms a 0

3 2 (IR)4 ¢I 2• (-I + 3 cos 2 i O) +1-28 J2 E - eO

.[10 + 16 i-e02- 25 e02+(-60- 96 ¢;-e 2

2 2+ 90 e 0) cos i 0 + (130 + 144 - e 2 +

continued
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L°S

S

- 25 e_) cos 4 i 0 - _ J4 - e 0(3

- 30 cos 2 i0 + 35 cos 4 i0)I + M0 (74)

1 t J2 (-I + 5 cos i0)
a 0

+T-_-_J2 -10+24 - e2- 25c'0

2 2+ (-36 - 192 - e_ + 126 e 0) cos i0

+ (430 + 360 i-e2-45 e_)cos 4 i 0]

45 j4 2 + 9 e 0 + (-144128

- 126 eo2) cos 2 i0+(196+ 189 e_)cos 4i0] }

+ _°0 (75)

_0 _0 t 1 3 (_0)2= - -2 J2 cos i0

3 2 (_0; _ _ 2+-3-2 J2 4 + 12 _1 e 0

-9 e_)cos i0 +(-40- 36 i-e_

+ 5 e_) cos 3 i 0 -_ J4 (2 + 3 e_) (3

I
- 7 cos 2 i 0) cos i 0t + g20

b. Long period terms

(76)

;= ]-6J2 e0 (I - e0) - Ii cos i0

4]40 cos 10 5

1 - 5 cos 2 i0 +_ -_2 e 0 (i

- e 0 ) i - 3 cos l0 .....

l - 5 cos 2 i0

COS 2_
S

i_ = -

1 J3 R
(I - e_) sini O sin _s

2 J2 PO

e 0 e_

(i - e_)tan i0

(77)

(78)

[1-6 (R) 2 5)3/2 ( 1 2.Mt = i j2 _0 (1 - e 0 - 11 cos 10

 ocos4 o +oi,-5eos2ioj (ieol

- 3 cos 2 it) sin 2 _
1 - 5 cos 2 i0 s

1 J3 R (i- eo )3]2

+ 2 J2 P0 e0 sin i0 cos o_s (79)

w_ = - J 2 + e(} -

4 6
cos i0 400 e 2 COS i0 ]

- 40 (2 +5 eo2) 2 (1- 2 )
• - -- 2 ]

1 - 5 cos 10 5 cos i 0

5 J4 (_00; [232 J2

4.
cos I0

- 8 (2 + 5 e02) 2 .

1 - 5 cos i 0

80cos6i0_2]}
(i - 5 cos 2 i 0)

1 J3 R _.sin i0

-_ _-__o _,eo-

{1= - _ J2 eo

9 2 2

+ e:u - 3 (2 + 3 e 0) cos i0

sin 2_
S

2 ) (80)
e 0 cos i0

sin i0 cos _s

cos i0 [i 1 +

2 .
60 cos 10

2 .
- 5 cos l_

u

200 cos 4 i0 l J4 R 2 2 [

(i _ 5 cos2 io_2J- _6 -_2(_0) eo cos i 0 3

,ocos ,o II
+ 2 +• S

i - 5 cos 10 (1 - 5 cos 2 i0)

1 J3 R e0 cos i 0

--_7_ Po sini 0 oozes
(81)

b,

a
P

Short period terms

=2 J2 _ _- Sin2 io) -(I- e O)

3
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Sep - 2 e; _' 2 -i + 3 cos 2 i

- (1 - e O) + 3 sin 2 i 0

- (I - e 2) cos 2 (O + _ + _of
S

i (_0)2 2 [3 e0 cos (0 + 2_ +2_o _)- 2 J2 sin i 0 s

+ e 0 cos (38 + 2_s + 2_o_)]} (83)

ip =4 J2 cOSio sini 0 cos 2 (0 +Ws +_)

+ 3 e 0 cos (0 + 2_ s

+ 2_s + 2_)I

+ 2_f) + e n cos (30

p =--4 J2 \po / cos i0 [6 (0 - M s - M_

M
P

(84)

Up-

+ e 0 sin O) - 3 sin 2 (0 + _ +s _ )

- 3 e 0 sin (O + 2_Os + 2_f)

- e 0 sin (30 + 2_s + 2_)] (85)

3t2
<I-eo2) R 2

:- J2( ) }2<-I8 e 0 E

b;+ 3 cos 2 iO) (1 - eo2 ) + + l sin 8

[-

+ 3 sin 2 i 0 [sin (8 + 2Ws + 2_)
L

- (1 - e O) --6- + 1 +sin (30 + 2co s

+ 2_t) (I - eo2 ) +_- +-_

(I - e 2 ) R 2 !j21 o) 2(-i
t

+ 3 cos 2 iO) (l - eo) + + sin (9

2

+ 3 sin2 io [sin (0 + 2_S + 2_f) {-(%--_0)

(1 - e_)- -:-+ 1 + sin (38 + 2_s + 2_._)

(86)

+8 J2 6 (-I + 5 cos i 0) ((9 - M s

+ e 0 sin (3) + (3 - 5 cos 2 i 0) [3 sin 2 ((9 + _ + _f)
k S

+ 3 e 0 sin (0 + 2_s + 2_f) + e 0 sin (30

+ + )If
(87)

s 2m_

whePe

= +Mr.E - e 0 sin E M s

I/_l+e 0

tanO :_'-I_- G tan _2

The solutions for the perturbed elements are then

x =Xs+X _ +Xp

where

x = a, e, i, _, _2, M.

These expressions provide all of the in-

formation necessary to describe the motion of a

satellite to the order J22. floweret, there exist

requirements in many studies for the l)erturbed

expressions for r and <b, (% = 0 +_). This in-

formation can be obtained from the equations

presented above; however, the procedure is

lengthy and unnecessary in view of some of the

work quoted in (HCF. 18) by Kozai. This ref-

erence gives r and _ to the order J2.

F

1 R2 1 (1 - 3 2 [_r = r 0 +_ J2 p _ sin i)

{- cos0 + r 1 ]
J

1 R2 1 sin 2 i cos 2 (O + _o)
+-432

=¢'0

1
1 -e(1

(88)

+2 J2 2 - _ sin i (8 - M + e sin (9)

--_ sin i e sin ((9 + 2_) -

e 2-_2sin2i sin 2 (8+_) -_eos isin(3(9

+ 2_)} /89)

where r 0 and %(] are values computed from mean

orbital elements.
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Oblateness of the central body tends to make

a twisted space curve out of the satellite orbit.

It is customary to map this orbit as a plane curve

on the orbital plane which contains at any instant

the satellite radius and velocity vectors. In this

plane one may either approximate the trajectory

by an osculating ellipse (the astronomical ap-

proach) or try to assume the actual equation of

the plane curve to the desired accuracy. This

latter approach is the one taken by R. Struble

(Refs. 20 and 24). Another significant difference
is that in this work some of the conventional

orbital elements become variables to the order

J2" Struble in this reference derives per-

turbations based on the following model

,[---= u =-- I + e cos (_- co) - J2 c + J2 d
r r 0

Jr0, e, co, c, d variable] (90)

In the solution obtained, the short period pertur-

bations are isolated in the c and d variables, while

r 0, e and ¢0 have only long period oscillations

(with a secular variation in _0). The independent

variable 2_ is related to the central angle from the

node, _b, but provides simpler solutions than _b,

In particular, _ =¢ when J2 = O. The solutions

for some of the elements, accurate to the second

order, are included below. Note is made of a

shorthand notation employing a set of inter-

mediate variables ,l2 . . . ,16 and v I and v 2.

These terms are presented following the

equations for the terms c and d defined in

Eq (90),

= i [I +e cos ($ o_) J2 c 2 d]
u r--_ - - - J2

1

r 0 (c°s2io+4 o i
P

9 J2

- 3 sin 2 i0) +-_ "_0 _2

(2

(91)

2 . 2 dA
p = r sin 0* _-

where A is the right ascension and e* = 90 - L.

(5 cos 2 10 -i)

3 R<__n)2 2 -1 1e = e 0 - _ J2 e (5 cos i0 -I) (2_3 cos 2co

I
+4 ']4 sin 4co)

co = coo + J2

+ '15 -_ J 2 $ +

(92)

?

+2 J2 (5 cos i0 - i) (']6 sin 2co

I
- _ ,l4 sin 4_o) (93)

[i =i 0 + _ J2 sin 2 i 0 e cos (_ + co)

e ,]+ cos 2_ +-_ cos (3_ - co

9 2 P1 sin 2 i0 (94)+]-6 J2

e
i0 = i00 + ,-32 J2 sin 2 i 0 (5 cos 2 i 0 1)

14 + 15 sin 2 i0 - 5 _-_ (6 - 7 sin 2 i0 cos 2c_

J2

(95)

¢> =$ +3-8 J2 e cos i0 sin (-_ - co)

+ 2e (I - 2 cos 2 iO) sin ($ + _)

2
+ (I - 3 cos 2 iO) sin 2_ +-9 e (I

] 9 2 v2 (96)- 4 cos 2 i0) sin (3_- _ +_ 32

Now adopting the shorthand notation

35 J4

D 1 = - T_ j2-_2-

The short period terms c, d can be written

c = _ sin 2i0 + cos 2_

2
e

+ e cos (3 5 - oJ) + -6_COS (47[_- 2_)

32+ _ cos 2

1 /R_2e 2 2

+ _-_F_0 ] (2-3 sin i0)cos(22_- 2 _) (97)

9(_0)_"-" = - "2-'-- D1 sin2i0_f

continued
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-_? I_°,-_-<__°,>=.'_0

I[.I_°,-.i_°i,.i.._°

1

-T_- I e2 l(_ D1 - 1)sin2i0

- (_+_Dl)sin4i01

+e 4 {(T_DI- _-_)sin2i0

"''° I- (_I + :_ DI) sln4i0 cos (4_ - 2w)

1 + + I) sin4i0-T_ [-I sin2i0 (IDI

+ '19 D +_)sln4101+ e2 I-_sin2i 0 _T-5_ i

+,_1..I_=.._o..._oIco.(._+..o,

-,_+_-_,--',oI.o.<=,_,.,

+ e 3 {- (_Dl+_.y) sin4i01Icos(5__co)

- _r_ sin2i 0 cos2i0 cos (5_ + _)

'[ l_ II- _ e3 sin4i0 cos (5 W + 3_)

--_ le I I'_-sin/10 +('_D1--,_r)sln4101

' I ='=n'_ol]+ e D1 TT'Y0" cos (6W - 2_)

i[ {_ I- ;_ e3 sin410 cos (7_ - _)

. i sin4i011 cos

,_+_o,,s=_,oI]-.,.
I.' Io__=-,-',olIcos 4c_ f (98)
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Finallythepseudovariables_2" " " _6
andvI andv2 eanbedefinedin termsof the
truevariables.

,I2 =

n3_

'14 =

n 5 =

'16 =

vI

+ _4

+

. ,35 15 D1 )sin210(# D 1 - 1) ÷_-8- --7-

+ (#D I-_) sin410+e 2 _#DI-I)

-_DI) sin210 +(_ D 1 "_)sLn4i0]

[(_ D1-_)- (_DI) sin2t 0

+ _ Dl) Sln4i0]} (99)

(1oo)

2 8 13 + (_ __D1) sin4i0 ]t- e (,TD1 +.2-_) sin2i 0

le 2 [_ sln2i0 _ _sin4i0] I (101)

-151 93 , 2,(_ D1-4)+(-T2--'Y"D1)sm _0

+ (_D l-_)sin4i0+e 2 [(_-_-_D I)

- (_ D1 +_)sin2i0+(_Dl-_)sin4t0] }

l(_+#D1) sin2i0-(_+_ D1)sin4t0 (102)

+e 2 [(14-# D1)+(_Dl-_)sin2i 0

+,V - o]t--4- (1o3)

I 3 7 sin210 )=, -"_e D 1 (6- cos('_- 3_)

e

+_e_- (36 - 89 sin210 ) cos (5- w)

+_ 13D1 (4 + e 2) - 28(6-7sin210 )

- 7e 2(2 - 3sin210)l cos(5 + _)

+ _Sin2i0 D 1 cos (5 + 3w)

2

+_-_(9 -25 sin2i0 ) cos (25-- 2_)

+ _ [2D 1 (6- 7sin2i0 ) - 7 (4- 5 sin2i0 )

+_-_ 6D1 sin2i0 - (2 - sin2i 0 cos (25 +2w)

2_

and

v
2

+ _ 128 (2 - sin210 ) + 9D 1 (4 +e 2) (6 - 7 sln2i0 )

1- 21e 2 (2 - 3 sin2i0 ) cos (35 - _)

eEo+_r4" 1 (4+e2) sln2i0

- 2 (3 - 2sin2i0)l cos (35+ _)

'[+ _r_ 7 (10 - 9 sin2i0 )

+ 18D 1(6- 7sin210)Icos (45- 2c0)

+y_ [18I)i(2+ 3e 2) sln2i0 - 6(3 + sln2i0 )

2 7sln2i0)l- e (12- cos 45

3

e sln2io )+ _ D 1 (6 - 7 cos (55- 3c0)

+ _ 127D1 (4 + e 2) sin210

- 20(3+sln210)l cos(55- _)

2 Ii sin2i0 sin2i0)le 8D 1+ _ - (2 + cos (65- 2_)

' ]}e D I sin210 cos (75- 3_) (104)+_--_
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+_ [(3-_ D1)+(_D 1--_) sin2i 0

4 2 ll 9,89 5D1)sin i0+e (___TD1)+ _1--5- _

+ (_9z9 D 1 91 , 2,- _ sm 10

+(_-_-_D1) sin4i01 ] sin 2_+½ [e 2 {-_-_

¢163_3 D1)sin2i0+'I-4-47

17, . 2.
+ (_D 1 - Lr_-)sm t O

-e

e I .129 91 -sin 2.+ _ 2 __ (]_ + _ DI)+ (.___ D1 +_f_4q. , to

sin to +( Dl- rlsin

+e 2

sin 4_-

- (_- D 1 + _) sin2i0

3
- e ° %- _ sin sin(5_ - Lo)

+ _ D 1) sin2i0

I] sin(6_- 21,)

tD sin2i0 (_

-7 Disin i0-F[-2(7-8sin2i0 ) sin(7_;-3:o)

(lo5)

In these equations _0, i00 and e 0 are inte-

gration constants and as before the singularity

at i = 63.4 ° occurs. However, Struble notes

that for this inclination the motion ts given by

the simple pendulum equation and eonelu:les, as

was done earlier, that an oscillation occurs in

the element _.

Still a third approach, though somewhat more
similar to the second than the first, to predicting

the motions of a satellite has been developed by

Anthony and Fosdiek (Ref. 25). This work,
based upon the method of Lindstedt, is the re-

sult of series expansions for all variables in

power series of the small parameter J 2. Since

the higher order coefficients (J3' etc.) are

neglected, these series are truncated following

it?rillS of t}le order J2" This being the case,

each of the variables may be represented as

u = _- = u 0 (%)+ 3/2 J2 Ul (¢)

P r2_ = PO (_) + 3t2 J2 Pi (¢)_

/

0' (90 - L) = _r/2 + 3/2 J2OI'(E_)_J

(106)

where the new variable _ is defined by

¢ = _ (1+ 3t2 J2 (bl)

¢1
constant to eliminate secular

variations in u

and u 0 = 1/r (for Keplerian orbit)
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Nowstartingthesolutionfor themotionat an
apse(i.e., ata pointwherer = 0), the equations
of motion were found to be as follows:

General First-Order Results (Arbitrary %0 )

I 3J2 R 2 ]¢ = t 1 + _ (_0) (2- 3 sin 2 i) (given

01 =

¢0' use this equation to find %0

J2 sin 2i (_0)2 I2-+ 4 R 3'3 sin %0
4c

(107)

- 2n sin %0 cos (% - %0 )

+ (3 + 2,3) cos %0 sin (6_ - %0 )

- n sin %0 cos 2(% - %0 )

- _ cos %0 sin 2(% - %0 )

-3(% -t0) Fc°s%0 (_ -%0)

-sin %0 sin (%- %0)] }
(108)

,°r2;°r0v o sin i

+ 4_]) cos 2% 0 - 3_ cos 2_ 0 cos (% - t 0)

+ 3n sin 2_ 0 sin (_ - %0 )

- 3 cos 2_ 0 cos 2(% - %0 )

+ 3 sin 2t 0 sin 2(% - t O)

- 'l cos 2% 0 cos 3(% - %0 )

+ n sin 2% 0 sin 3(% - %0)]I (109)
?

u .... g 1 + n cos (_ - %0 )

r roe .

J2 R 2

+ 16-_C

i I+_ _0-_r = r 0 1-+ _1 cos (t -

- 1-6- (1 + n) [I+ _ cos (_ - %0)]2-

V2 V02 I _]2- _ i + + 2,I cos (% - t O)
C

J2 R 2 M 1 1

(111)

(112)

where

V 0 + n + 2'3 cos (% - %0 ) 1
V - l+rl

J 2 R 2 2

)

L 1 = {24 + 12q 2 + (sin 2 i) [-36 - 18q 2

+ (24 + 32n+ 3q 2) cos 2_3]}

+ {- 24 - 8'32 + (sin 2 i) [(-20 - 27TI

+ 4'3 2 ) cos 2_ 0 + 36 + 12'32]} COS (_ - t O)

+ {-[8+1_'3

+ 16n 2] (sin 2 i) sin 2%0} sin (% - %0 )

+ {_ + +(-4
- 6'32 ) COS 2%0] sin 2 i} COS 2(t - %0 )

+ {(4 + 6'32) (sin 2 i) sin 2%0} sin 2 (%

-%0 ) - t5q (sin2 i)cos 2%0/ cos 3(%

t 0) + _5q (sin 2 i) sin 2%0_ sin 3(_ - t O)

_ { 2 (sin 2 i) cos 2_0} cos 4(_ - %0 )

+ {'32 (sin 2 i) sin 2%0} sin 4(% - t 0)

(114)

M 1 = {16(3 - 3'1 - 'l 3) + (sin 2 i) [24(- 3

+ 3n+ q3) + 8(3 - _3 - 6_ 2 - 3_ 3) cos 2_0] }

+ {4(-12 + 12'3 - 4,32 + 3_ 3)

+ (sin 2 i) [6(12 - 12'3+ 4_ 2 - 3_ 3)

+ (-40 - 18n + 8'32

+ 12'33 ) cos 2_0] } cos (_ -%0 )

+ {- (16 + 66n + 32'32

+ 6n 3) (sin 2 i) sin 2%0} sin (_ - %0 )

+ {16_ 2 + (sin 2 i) [-24_ 2 + (16

+ 24'32 ) cos 2%0] } cos 2(% -%0 )

{(16 + 24_ 2) (sin 2 i) sin 2%0} sin 2(_

- tO) + {4q 3 + (sin 2 i) [- 6q 3

+ (26n+ 9n 3) cos 2_0] } cos 3(_ - %0 )

3 2

+ 9n ) (sin i) sin 2%0} sin 3(%

- {(26_{16_12 (sin2 i) cos2%0}t0) + cos 4(_ - _0 )

continued
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1602 (sin 2 i) sin 2_0}

3,13 (sin 2 i) cos 2_0 }

3_13 (sin 2 i) sin 2_0 }

2
c =13+1

sin 4(G- _e)

cos 5(_- t0)

sin 5(_- _0).

(115)

(116)

2

V 0 r 0
- 1 (117)

q u

Under the assumption that the trajectory is

nearly circular these equations can be simplified

to yield

Nearly Circular Orbits (Arbitrary 60 )

I + 3J2 /R_ 2 i)IG (given-4--\_0-0) (2 - 3 sin 2

¢b0, use this equation to find _0) (118t

+ --_ sin 2 i cos _0 sin (_ - _0 t

-({ -_0 t rcos6 0cos(_ -t0t

- sin 60 sin (_ - ¢0)]1 (119)

{ 3J2/  2 2. [cos%P = roV 0 1- 4 \r0/ sin t

- cos 2_ 0 cos 2(_ - _0 )

+ sin 2_ 0 sin 2(_ - _0)]I (120)

u=r0

+ J2 R 2 t6 _0 )]

+ (sin 2 it [- (9 - 6 cos 2_0t

+ (9 - 5 cos 2_ot cos (_ - _0 )

- 2 (sin 260 ) sin(_ - G0)

-(cos 2_0) cos 2(6 -G 0)

+ (sin2_0)sin 2(_ - _0)]}] (121)

r =r0 [l+n {1 -cos (_-_0) }

J2 R 2

+ (sin 2 i) [-(9 - 6 cos 260 )

+ (9 - 5 cos 2_0) cos (_ - _0 )

- 2(sin 2_ 0) sin (_ - $0 t +
continued

- (cos 2_0t cos 2(_ - _0 t

+ (sin 260) sin 2(6 - _0)]}1

V2 = V02 [1- 2n {1 - cos (_ - _0) }

(122)

+J2 (r_) 2 {3 i1 -cos (_- t0) ]

+ (sin 2 i) [(- @+ _cos 2_0 )

5 cos 2_0) cos ($ - _0 )

- (sin 260 ) sin (_ - _0 )

+ (cos 2_ 0) cos 2(_ - _0 )

-(sin 2_0)sin2(_- to)l} ]

V = V 0 [1 - q {1 -cos (_ -_0) }

J2 R 2 1
+ -T (_00) ,3 [1-cos (_-_0_

2 + 2-cos 2_

o)+ - 2- cos 2_ cos (_ - _0 )

- (sin 2_0) sin (_ - _0 )

(123)

+(cos 2&0) cos 2(_ -t 0)

-(sin 2_0)sin 2(_- _0t]l I (124t

The solution obtained using these equations

exhibits no singularity at the "critical inclination"

and indeed is well behaved at every point. For

this reason this set of equations, though not pre-

cise, seems well suited to analytic studies involv-

ing computer programs.

4. Analytic Comparison of General Perturba-
t1-6 n s Formulations

Recently several analytical methods of deter-
mining the oblateness perturbations have been

published (Refs. 18 and 23 to 28) in which basically

different m_tthematical approaches are employed.

These approaches include:

(1) The classical approach of general
perturbation theory in celestial me-

chanics, using the concept of an oscu-

lating ellipse and soiving for the varia-
tions in orbital elements.

(2) Integrating the equations of satellite
motion by seeking a solution in the
form

r = r 0 + e cos ($ - _) - J2 c + J d
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(3)

where c and d are unknown functions

in terms of short-period perturba-

tions (to be determined by the integra-

tion process), whiIe r 0, e and _ ex-

hibit only long-period perturbations.

Direct approximate integration of the

equations of motion with oblateness

perturbations, solving directly for the
instantaneous coordinates of the body
in orbital motion.

Depending on the variables and mathematical
tools used, the final solutions of various authors

are seemingly different and physicai interpreta-
tions of certain important variables are some-

times hard to visualize. The transformations

between the different sets of variables employed

in the literature have not been obtained previ-
ously.

Due to these facts a somewhat bitter contro-

versy has arisen about the merits of classical

celestial mechanics (Refs. 20, 23 and 29) for the

solutions of near-circular orbits. The present

analysis, which was made by J. Kork (Ref. 30)

compares the solutions obtained by all the above

mentioned authors for nearly circular orbits

within the first order accuracy in the oblateness

2 terms).parameter J2 (i. e., neglecting J3' J4' J2

a. Kozai's formulation (Refs. 18 and 26)

Upon a change in the notation utilized by Kozai

to that utilized by Vinti and upon changing the
symbols to be consistent with those presented in

Chapter III, the first order perturbation in posi-

tion may be written

+ _ J2 sin i cos 2 (@ + w)

125a)

6¢ = g J2 (2 - gsin i) (O-M+e sin0)

3 2 F2 2
+ (1 - _sin i) Lo_ (1 - e

1 (1 - _11- e 2) sin 20]-_e ) sin O+ _-

-_-sin e sin(0+ 2c0)

- 1-2- sin sin 2(0 + c_)

o 2 I- 6_ cos i sin (30 + 2co) (125b)

and the secular perturbations in the orbital ele-
ments are

= _ - _ sin t

(126a)

2

_= _0- _J2 (pR_) _t cos i (126b)

= M0 + Nt (126c)

= no + 2J2 n o _-sin

(126d)

where c00, _20 and M 0 are the mean values at the

epoch, i.e., the initial values of the osculating
elements from which the periodic perturbations
have been subtracted.

There are no first order secular perturba-

tions of the semimajor axis, a, of the eccentricity,

e, and of the inclination, i.

The mean value of a (i. e., a) is given by Kozai

in terms of the unperturbed semimajor axis a 0,
as

t 3 1
(127)

Notice that the classical relationship n02 a03 P,
becomes in these variables

n a 1 - _J2

f- 2- sin i (128)

The value of the mean semimajor axis, a, has

been already used in the derivations of Eq (5).

If the eccentricity, e, of the orbit is a small

quantity of the first order or less, Eqs (125) can

be reduced to the simple form given below (Ref.
26).

2

5r _5-J2 (R) sin 2= t cos 2k

1 -- 2 .

=_-a _ sin l cos 2X (129a)

7 2t56 = - J2 - I-_ sin sin 2k

=- _ - 1-'ff sin i sin 2k (129b)

where (within a first order accuracy)

k=M+c_

= 2J2 = _J2

Since _ is a small quantity, and since the relation-
ship between M and 0is(Ref. 31)

M = 0 - 2e sin 0 + . , .

it can be shown that for small eccentricities,

i.e., e = O(,)
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1 + _ cos 2]< = 1 + _ cos 2 (8 + _)

+ 4c sin 0 sin 2(8 + w)

1 + _ cos 2¢

(130a)

and similarily

I + c sin 2k = I + _ sin 2qb (130b)

Thus Eqs 129a and b can be written also as

i- 2.

6r _ _a E sin t cos 2¢

_b _ - _ - I_ sin sin 2¢ (131)

Finally, the expression for the instantaneous ra-

dius vector in near-circular orbits can be written
as

V

r = _ [I - e 0 cos (¢ - j)

1_J2 sin i cos 2 (132)+

From Eqs (126) and (130a) it can be seen that

for small eccentricities the average angle from
node to perigee _ can be approximated for one

revolution by its initial value, o_ 0"

Kozai's solution for near-circular orbits con-

sists basically of two independent components
varying about a mean radius, a-. These com-

ponents are:

i 2
(i) An oblateness term, _-_ sin i cos 2¢

which has a period of :r (double periodic
within one full revolution) and depends

mainly on the shape of earth seen by
the satellite vehicle (i.e. oblateness

parameter J2 and inclination of the or-

bit, i) but is independent of the orbital

eccentricity, e, and nodal angle to
perigee, c0. The oblateness term de-

pends also on the semimajor axis

@)2.through the term , = _J2

(2) An elliptical term, e 0 cos (_- coO ) de-

pending only on the geometrical prop

erties of the orbit, e 0 and _0 but being

completely independent of the oblateness
of the planet or the orbital inciination.

It is obvious from the mathematical form of

Eq (132) that depending on the relative size of the

oblateness and elliptieity terms, in connection

with proper phase shifts between the two, two,

three or four "apses" can be obtained during a
single revolution (i. e. points where _ = 0).

This fact will be graphically illustrated in the
discussion of Izsak,s work.

b. Struble's formulation

If only terms to the first order in J are re-

tained, Struble's main results, periodic in ra-

dius, can

24, p 93).

to±[1+eoos co)- J2 (133a)

ro Pmz cos °

+ _) (2-3 sin 2 io) (133b)

where

C =

be presented in the following form (Ref.

$+ 8J2 e cos i sin ($ - co)

+ 2e (I - 2 cos 2 i0) sin (_-+ _)

+ (1 - 3 cos 2 io) sin 2-$

+ge (1 - 4 cos 2 i 0) sin (3_ -

(133c)

_- sin i + cos 2 5

2
e

+ e cos (35- co)+ W cos (4_ - 2co)

+ cos 2 + g (2

- 3 sin 2 i 0) cos (2_ - 2_) (133d)

2 _dA
= r sin 0'-_ =Pm angular momentum

UL
about the polar axis

0'= 90 ° - L (133e)

In Ref. 32 it is shown that the angular mo-

mentum orbital plane is given by

h=r 2(d+_;+eosi6)= _ (134)

From Eqs (133) and (134) it can be shown that

2 .

= _/_ i _ _ cos IPm cos i or P 2 (135)
Pm

For small eccentricities of the order J2

i + e COS ($ - o_)= I + e cos (¢ - _) (136)

at least for one revolution. Similarly all terms
2

containing e , J2 e, etc., can be neglected. Using

Eqs (135) and (136) the results given in Eqs. (133)
can be simplified to read

F
r = r 0 11 - e cos (_ -co)

sin i cos 2
\r0/

(137a)
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= P _ p R (2 sin2 i)10 [
Furthermore it should be noted that for small

eccentricities

J2 /_0/ = J2

p = a (1 - e 2) = a (138)

Remembering this approximation and comparing

Eq (137b) with Eq (127) similarily Eq (137a) with

Eq (132) it becomes obvious that for e = O (J2)

the first order results of Struble are identical with

Kozai's formulation and the constant r 0 is given

simply by the mean semimajor axis:

r 0 = _- (139)

c. Izsak's formulation (Ref. 23)

The instantaneous radius is given by Izsak as
follows

1 2r = a* 1 -e cos (¢>-_)+ 2-e cos 2(¢ -_)

sin i cos 2w +...

where

a_' = a - 2- + 2-J2 (i - _sin i

w = (I + e') O + c0 (140)

' = a constant for the motion of the perigee

of the order J2

For e =O(J 2) the solution for one revolution is

simply

r =a* ]I -ecos (¢-_)

+ J2 sin i cos 2 (141)

Comparing Eq (141) with Eq (132) it is seen that
Izsak's solution can be also reduced to the form

given by Kozai and the parameter a* is simply
a$=_.

An interesting feature of Ref. 23 is a set

which represents parametric families of curves

obtained by solving Eq (141) of this study nu-

merically for various values of e 0 (0.0, 0.000120

0.00030, 0.00049) and for three particular cases

of 0_0 (0°, 45 °, 90°). The curves show clearly the

possibilities of 2, 3 and 4 "apses" (i.e. points

where _"= 0) during one revolution, depending on

the relative sizes of ellipticity terms with respect

to the oblateness terms and also on certain phase

shifts between them. These figures have been

reproduced and are presented for convenience

as Fig. 7.

d. Equations derived by Anthony and Fosdick

The form of the resulting equations in Ref. 25

is completely different from the results obtained

by the authors considered previously. In Ref. 28

the equations of motion in spherical coordinates

are integrated directly and certain new variables

are introduced, which do not have a simple phys-

ically intuitive connection with the variables used

previously. There may exist some doubt, how

the initial value, _0' of the "independent variable

for which the first-order analytical results for r

and V are periodic" compares with the classical

VO 2

co0, and how the analog of eccentricity _ -z ---2" - 1
V

C

may depend on the classical eccentricity, e.

These transformations are far from obvious,

thus, they are derived in this section by reducing

Anthony's solution to an analytical form similar

to Kozai's results and then comparing the coef-

ficients term-by-term,

The equations for arbitrary near-circular or-

bits are given as Eqs (i18) through (124) assuming

13 = 9(J2). Certain terms in these equations can

be simplified by using the equality

cos 2t 0 cos 2(t - t 0) - sin 2t 0 sin 2(_ - t0)

= cos 2t (143)

Next, using the previous notation _ = J =

J2 the expressions for r and V can be

written as follows

r = r0 {1 +_ i1 - cos (t - t0) ]

-_ +_ cos(t -t O)
1 2

r

_-9 + 6 cos 2t 0)- _-_ sin i

+ (9 - 5 cos 2_ 0) cos (t - t 0)

-2 sin 2t0 sin(t -_0)- cos 2_]}(144a)

[

V0 I i -n + 0 cos (t - t 0)V

t 1 2

+ _ - _ cos (t - _0 ) + _c sin i

- 5 +2 cos 2t

+ - _ cos 2_ cos (t -t 0)

- sin 2t0 sin (_ - t 0) + cos 2_]} (144b)

where

= g _ (2 - 3 sin 2 i (p (144e)

Notice, that in Eqs (144a) and (144b) the sine and

cosine terms appear combined with a small con-
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stant of the form al cos t, where t = (i - a2 ) @.

Since for the nearly circular orbit considered here

botha I and c_2 are of the order c, it follows by a

reasoning similar to Eqs (130a) and (130b) that

1 + c_1 cos _ = i + o I cos @, etc. (145)

Equation (145) indicates that for the purposes
of this analysis it does not make a noticeable dif-

ference, if during any single revolution % is simply

visualized as the central angle from the ascending

node, 6.

Next, collecting the cosine and sine terms in
Eq (144a)

r = r 0 (i + A 0) [I - A I cos (% - t0 )

i 2+ A 2 sin (% - t0) + ge sin i cos 2

(146)

where

3 2. . 2.
A 0 = _ - _ + _c sin t - _ sm t cos 2%0

3 . 2. 5 2.
A I = _ - _ + _-_ sln t - _-c sin i cos 2%0

l 2.

A 2 = _c sin I sin 260

By trigonometry

- A 1 cos x ± A 2 sin x

Thus Eq (146) becomes

r = r0 (1 +A0) I1 - ¢A12+ A22

1 2 t]+s 0)+ g-( sin i cos 2

where

°0: Q)

cos (% -t o

(147)

Kozai's form of radius, given by Eq (132) can
be written as follows

r = g [1 - e cos (qb- COO)

+ _-( sin i cos 2 (148)

By comparing Eq (147) with Eq (148), while re-

membering that within the first order accuracy
t = ¢, the following important transformation

equations can be derived by equating the corre-
sponding coefficients of two Fourier series ex-

pansions of the same function _>, Thus, Anthony's

variables are related to Kozai's formulation by
the following equations:

_= r0 [1 +_ ] c + Ic sin2 "- 1 +

continued

e =

- ( sin 2 i cos 2_0 ]

I(q 3 2.- _ +2-_ sin l

-I' sin2 ic°s 2%0) 2

+ (_' sin2 i sin 2_0) 2]

1/2

(149a)

(149b)

coo = {0 tan -1 I_ 2 O)- _ sin i sm 2_

n - _ +'2- _sin i-_- csin i cos 2_0

(149c)

The inverse transformation equations for "O and

r 0 can also be obtained from Eqs (149a) and

(149b) to be:

= - g( sin i sin 2t0

3 2 5 2
+ _ - _ sin i+ _ sin [ cos 2_ 0

(150a)

[1 3 2r 0 = a - rl + _ - _c sin i

sin 2 i cos 2t0 ] (150b)+

1 2 ol+ g( sin l cos 2_

t O = t O (cJ 0, i, e, c) (150c)

Unfortunately, Eq (149c) is transcendental and

the third transformation must be found by nu-

merical successive approximations. Character-

istic solution curves for Eq (150c) can be obtained

by the following procedure:

(1) For a given e, i, c solve for various

values of _0 by assuming values for

t 0 in steps of 10 ° , for exampIe.

(2) Plot the data and obtain a value of $ 0

corresponding to the given o_0.

For step (1) it is advantageous to write Eq
(149c) in the following form

[ 2 ]
_°0 = %0 - tan-1 3- l 2 ._2-jsin i 2t0)

(:5:)

Note:

If in Eq (151) the eccentricity becomes smaller
2

than a criticalvalue e* = _ sin i, the vaiues of t 0
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can no longer be picked arbitrarily. This fact

is illustrated by assuming e = 0 in Eq (149b) and

observing that the required value of t 0 = 0 °, 90%

180% 270 °. Physically this means that for e = 0

the "apoapsis" always occurs at the equatorial

crossings (_0 = 0°' 180°) and "periapsis" always

occurs at the maximum latitude (t 0 = 90 °, 270°),

there being four "apsidal" points during one

revolution.

It is noted once again that _0 gives the loca-

tion of the minimum point of the eccentrical com-

ponents of orbital radius, while t 0, gives the ex

treme of the radius.

Finally, it should be remarked that the state-

ment made in Ref. 28

"e = In] for an elliptical orbit"

is misleading since it is true only for the non-

oblate case, while in general e = e (,i, (, i, t0)

and must be computed by Eq (149b). Only for

large eccentricities is the approximation e = INI

valid for rough engineering estimates.

e. General comparisons

It was shown above that to the order J2 in

oblateness all the methods considered are identi-

cal at least in the case of nearly circular orbits.

Mathematically, Kozai's formulations for the

instantaneous radius, Eq (132), and secular per-

turbations, Eqs (126) are generally the simplest

to use. However, if for any fixed orbit the or-

bital injection conditions are desired, the results

of Anthony and Fosdick merit investigation. It

was thus shown that the classical method of oscula-

ting ellipses is still valid for nearly circular or-

bits and that it provides a somewhat clearer ge-

ometrical interpretation of end results.

5. Solar and Lunar Perturbations

The problems of defining the changes in the

motion of an earth satellite due to the presence

of distant gravitating masses and the discussion

of the stability of an orbit are of necessity closely

related. This relationship exists because t}le two

analyses differ only in tile time intervals consid-

ered and the fact that forces other than those pro-

duced by external masses (for example atmospheric

drag) must be included in the discussion of sta-

bility. For this reason much of the material

presented in the following paragraphs is applicable

to subsequent discussions.

Analytic expressions for the perturbations due

to the gravitational attraction of a third body may

be derived by techniques similar to those used in
the oblateness derivations. This approach has

been taken by Penzo (Ref. 33) with the result that
one set of equations for the variations in the or-

bital elements may be obtained. This solution is

outlined below:

Choose geocentric coordinates with the X-Y

plane being the orbit plane of the disturbing body.
Let F be tile central angle between the ascending

node and the disturbing body, and _) be the

central angle between perigee and the disturbing

body. Also, let ip be the angle between the ve-

hicle orbit plane and the plane containing the

origin, perigee and the disturbing body.

Z

P_erigee

ip = Y

x  , ody

The deviations in the elements are derived in a

system based on this latter plane. In this system,

_2p = 0, COp = 0 and ip is the inclination. The

solutions obtained for tbe perigee system are then

transformed into the solutions in the original X,

Y, Z system. The solutions are:

3 sin r cos F sin i sin 9 [.
_ /_d rp P P P 13

Dip _ rd (l-e) 3 (I+ e cos 0) 3

+ 2e 2) e - 3 (l-9e 2 - 2e 4) cos 0

- e(l-6e 4) cos 2 01

3(i+ e) 3 sin 2 % sin iPd rp p

P r d e 2 (1+ e cos 0) 3

cos i

P (i

_p

+ 3e cos 0)

+C i

Pd 3rp 3 (1+ 4e 2) sin % cos % sin tp E

r d (l-e) 3 _l-e 2

(152)

_ Pd rp3 (i+ e) sin 2 Fp cos ip sin 0 [,e

Lo
r d (I - e)2 (l+e cos 0)

+ 3(l+e 2) cos 0 + e (1+ 2e 2) cos 2 0]

3 (l+e)3-_in F cos F (l+3ecos 0)
Pd rp P p

P rd e2 (i + e cos 0) 3

Pd 3r 3 (I+ e) sin 2 F cos i
__ P P P E+C

_)2

t-

r d (1 - _1 -
e 2

(153)
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_w = - cOS i /_fl
P P P

Lax

3

+__Pd rp (l+e)3 sin2 FpCOS ip [4 - 5e 2

rd2e4(1 + ecosS) 3

+ 3e (4-e 2) cos 9 + 12e 2 cos 2 0]

Pd
rp3 (l+e) sine3 2 t[ (6

r d e (l-e) (1+ e cos 8 ) 3

_ 44e 2 + 13e 4- 2e 6) + 3e (4-25e 2

+3e 4) cos @+e 2 (8-37e 2

+ 2e 4) cos 2 O] (cos 2 Fp - sin 2 Fp cos2ip)

+e 2 [(2+e25 +3e(l+e2) cos e

+ e 2 (I+ 2e 2) cos 2 O] (i-3 sln2 Fp cos 2 ip)1

_d 3r 3 (l+e) (4cos 2 I_ - sin 2 F cos2i
+__ P P P P

r d (1 - e) 2

+C_
(154)

3 e 2 sin2F cos iPd 15 rp p p+ E+C

P 2r d (1 - e) a - e2 (156)

where Pd and r d are the gravitational constant and

orbital radius (assumed constant) of the disturbing

body, respectively, and the Ci, C _, etc., are con-

stants of integration, i.e., they are functions of
the initial conditions.

The transformations to the elements in the X, Y, Z

system are

1 [( -sin _ cos i cos %)A lA I = _ cos _ sin ip P p

- sin c_sin ip sin Fp A _2p] (1575

AO - 1 I[sini sin FpCOSi(cos wsini
cos v sin3i P P

• sin aeos ipeOS Fp)- sln2icOSip sln Fp] Alp

+ (sin 2 isin IpCOS Fp- sin 2 ipSin 2 % cosi sfna) A_pl

(1585

sin a [(sins sin 2 F cosisint
cos co sin 3 i P P

- sin2i cos %) A _p

A e -

Pd 2 a 2 p2

2 (i+ ecos 0) 2P rde

3 2 sin 0 cos Oe sin 2 % cos ip

-6e (cos 2 Fp- sin 2 Fp cos2 ip)
COS 9

- 3 cos 2 F + 3(I+e25 sin 2 F cos 2 i -e2]+ C a
P P P

(155)

P Aa

2eJ
e

1 p

,u 2rd( 1 _ e)3(1 +e cos e)3

- 9e 2 - 8)

+ 3(2 - 9e2-3e4)cos0 +e(2 -9e2-8e4)cos 2 01

Pd _ rp 3(I+e)3 0)j(cos2

]_ r d e2(l+ecos

-sin %cos2ip) (i

+3ecos O)

+ sin 1_ cos i (cos a sini
P P

- sinacos ipCOS %) Aip] +A_Op

where

sin¢o sin i
sin _ -

sin rp

The assumptions in the derivation of these solu-

tions are that r d >> r and that the disturbing

body does not move during the interval of varia-

tion.

Thus, in order to solve for the perturbed mo-

tion of a satellite it would be necessary to compute

the perturbations (for some small time, say 1

period) due to each body being considered, resolve

these perturbations into a common coordinate sys-

tem, add the resultant motions, adjust the orbital
elements and then continue the computation. This

is obviously a lengthy procedure and is not intended

to be performed by hand.

Another approach to perturbations has been

reported by Oeyling (Ref. 34), who presents the
effects of these remote bodies in terms of varia-

tions in the position of the satellite in cartesian

coordinates. Only circular satellite orbits, how-

ever, are considered.
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ChooseX, Y, Z axessuchthattheorbit
planeofthedisturbingbodyis theX-Y plane,
theX axisbeingin thedirectionof thesatellite's
ascendingnode. Thedeviationsfrom thenominal
trajectorywill begivenin the%,n, _system,
whichmoveswiththepositionin thenominalor-
bit. _ is radial, and_is in thedirectionof mo-
tion.

Z

is _

X

The position of the disturbing body in the X-Y

plane is given by the central angle _- = T0 + )` f

where T0 is an inftial value at t = f = 0 and )` is

the ratio of the angular velocity of the disturbing

body to that of the vehicle. Geyling. s solutions
are

3 Pd rc 2

= - ][ _ _- (2 cos i - sin

r d

4 2

+ -_ sin 2t cos 2 ¢ + 4_'_-_- 1 sin 2i cos 25

+ (X+2) (l-cos i)2
cos 2 (_ +,)

(k+ l){2k+ I) (2X+3)

(k- 2)(i + cosl) 2

+ (k- I) (2k- 1) (2k- 3)

+ k I + k 2 sin, + k 3 cos, (160)

r4 Lr}_ c (2 cos2i -sin21)f

n= "8" _ rd_

11 2 sin 2 [ sin 2¢-
- -----8- sin2t sin 2 , - k(4k2_1)

(4k 2 + 12),+ II) (I - cos i)2

4 (x÷l) 2 (2k+ I) (2k+3)

sln 2 (_-+*)'

(4k 2 - 12k+ II) (I + cos±) 2 sin2 (_- ¢_]+

4(×- I)2 (2×- I)(2×- ,_) ,j
+ k 4 + k 54P + k 6 sin 41, 4 k 7 cos ¢_

(161)

3 Pd rc4

r d
2l-- sin 2 is/n, -f sin 2 i cos ¢

(1 - cos i)sini

-"zx(_+ I) sin(2_+ _)

(I + cosi)sini )I- 2k(k- 1) sin (2 7- ,
-j

+ k 8 cos ¢ + k 9 sin, (162)

where r = radius of the circular nominal orbit,
C

and the k' s are constants to be evaluated from

initial conditions. These solutions are indetermi-

nate for k = 0, ±1/2, ±3/2, ±1. However, for

k = 0, i.e., for a stationary disturbing body, the
particular solutions are

4
3 /_d rc r

g =" -8- _ rd _ [- _ (2cos 2i - sin 2i)

sin 2icos2¢ - 2sin 2icos2cbC

+ _ (I - cos±) 2 cos 2(* +T0 )

+ _ (I + cosl) 2 cos 2(*-_0 ) (163)

3 /_d rc4 [
_" "_- C _ (2 cos2± - sin2±

3 sin 2 i cos 2 ¢o)f - -_ sin 2 i sin 2¢

Ii
(1 - cos i) 2 sin 2(¢ + 70)

_(I + cos i) 2 sin 2(¢ - ¢0 )] (164)

3 _d rc4 {_
( =- 8 p rd-_ 1 +cos i) sin i cos (_ - 2_ 0)

-(1 - cos i) sin l cos (¢ + 2"¢ 0) - sin 2 i cos *] f

1 1
+-_ sin 2 i stn¢ +_ (1 - cos i) sin±sin (¢

+ 2_0 ) --_ (1 +cos t) sin i sin (¢- 2-¢ O) (165)

IV-38



Again,if morethanonedisturbingbodyis
considered,it is necessarytoconsiderthemin-
dependently,computetheresultantdisplacements
_, _, _in therespectivecoordinatesystems,re-
solvethedisplacementvectorsandadd. Despite
thelimitationimposedbytheassumptionof cir-
cularorbits, thisapproachaffordsa simplemeans
of computingrealisticcoordinatevariationsfor
manysatelliteorbits.

Themagnitudeoftheseradialperturbations
for nearearthcircular orbitscanbeseenin
Fig. 8. Thisdatais basedontheworkof Blitzer
(Ref. 35).

Anotherapproximatemethodfor computing
theeffectsofexternalmassesontheorbit ofan
earthsatellitehasbeenreportedbyM. Moe(Ref.
36). Thisworkis outlinedbelow:

First consider the perturbations of a satellite

orbit due to a disturbing body assumed to be in

the X-Y plane. The geometry is shown in Fig. 9.

The orbit will be described in terms of the oscu-

lating ellipse whose elements are a, e, M0, f_,

_, and i, and expressions will be derived to com-

pute the approximate changes in the elements

during one revolution of the satellite. The param-

eters i, w, f2, and Fare taken relative to the dis-

turbing body plane. For" an earth satellite, this

is either the ecliptic or the earth-moon plane.

Now, if the equations for the variation of ele-

ments of Section C- 1 of this chapter are utilized

together with the components of R, S and W, the

approximate changes in the elements can be evalu-
ated. Moulton (Ref. 1, p 340) gives the form of

these forces. Under the assumption that the ratio
of orbital radius to the distance to the disturbing

body is small these components may be expanded

in powers of r/a d and all but first order terms

can be neglected. This procedure yields:

R = Kdr (1 + 3 cos 2 rp)

S = 6Kdr [cos F sin (_ + 0) - sin F cos (_

+ O) coS i] cos F
J P

W = -6Kdr cos 1_ sin i sin FP

where

K d = Pd/2a3 z gH

a d = assumed constant.

Letting _ stand for any orbital element and _
for the change in that element after one revolution

of the satellite (from perigee to perigee), we have

t = 2Tr/n 2_r

d_ S d_ dt_ = _- dt = _- _g d9 (166)

t =0 O =0

where t is time measured from perigee passage

of the satellite. Since A_ is supposed to be

small compared to _, it is permissible to approxi-

mate all variables in the equations for element
variations for dc/dr by the values they would have

in the unperturbed orbit, and to approximate dt/

dO by its relationship to the conservation of angu-

lar momentum, h

2
dt r

where h = na 2 _is assumed constant.

Since the angular velocity of the satellite is usu-

ally large compared to the angular velocity of the

disturbing body, we may further assume that F

is constant during the time the satellite takes to

complete one revolution. Then integrals of the

type in Eq. (166) can be evaluated easily. The
results are

aa = 0 (167)

_q = 15 HTra4e _ {sin 2 F cos 2acosi

- sin 2 c_ (cos 2 F - sin 2 F cos 2 i)}

(168)

where q = pp = a (1 - e)

1 _ q (169)_e = -_

- 3 llTra3

Ai =2 _-_-2- {2 sin 2 F sini _ e2- (1

- 5 cos 2 _)] +5 e 2 sin 2F sin2_sin2i}

&_ = - 3 HTra 3 {5 e 2 sin 2 F sin 2 _o (170)

2 i-e )--

+4 sin 2 F cos i [(1 - e 2) cos 2

+4 (i +4e2)sin 2 _]}

H1ra 2 I_- 2&_o =- cos i Eke2+6 e

5 sin 2 F sin _cos _cos i

- 1 +3 sin 2 F cos 2 i - (5 sin 2

- 4) (cos 2 F - sin 2 F cos 2 i)}

(172)

where

H
M D GM D

Here, M E and M Dare the masses of the earth and

the disturbing body, a D is the average distance to

the disturbing body.
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G is the universal gravitational constant and n

is the satellite's mean angular motion.

For the moon as the disturbing body

H = H = 0.68736 x 10 -18 (naut mi) -3
m

= 10.8207 x 10 -20 km -3

= 2. 80763 x 10 -8 (earth radii) -3

If the disturbing body is the sun, then

H = H s = 0.31584 x 10 -18 (naut mi) -3

= 4. 97207 x 10 -20 km -3

= 1.29010 x 10 -8 (earth radii) -3

Note that H m = 2. 17631 Hs, but remember that

the fundamental planes are different for the two

perturbations. Assuming that the other variables

(a, e, i, and _) remain constant during one period,

q can be integrated from 0 to :r (the period of F)

to give the approximate total change. Dividing by

gives the average change in q for one revolution

of the satellite. Similarly, formulas for the
average change in the other parameters can be
determined to be:

±qsec = -7'5 H_ra 4 e ff_l - e 2 sin 2 _ sin 2 i

(173}

1
±ese c = - H Aqsec (174)

Ai
sec

A_sec = 6 HTra 3 _ [1 + 5 sin 2 (e2

- sin 2 i) 1 (175)

-3. 75 HTra 3 (e 2 sin 2 _ sin 2 i)

i_e

(176)

-3 HTra 3 cos i I( 1 _ e 2) c°s 2
A_se e =

÷ (1 + 4 e 2) sin 2 _] (177)

where the subscript sec means secular. To com-

pute the changes per unit time, divide by the

period of the satellite in the specified time units.

Note also that H and a must be in units consistent

with those used for q.

The above expressions indicate the secular

trend in the various parameters due to a disturb-

ing body, for example, the moon. To tl[ustrat_
the meaning and importance of these formulas, it

is helpful to return to the complete formula for

the perturbation of perigee distance q.

Recall from Eq. (157) that

= A }sin 2 F cos 2 _cos iAq

-sin2 __ (cos2 F - sin2 F cos2 i)l

where

A =15 Hva4e i-e2_.

Using trigonometric identities, the expression

for Aq can be written in the following form:

Aq = Aqper + Aqsec.

where subscript per means periodic

Aqper = A [sin 2 F cos 2 wcos i

g cos 2 F sin 2 _(1 + cos 2 i

and

= _ i
Aqsec 2 A sin 2 _ sin 2 i.

Thus zx q can be expressed as the sum of two

terms; the first of which is a periodic function

of F, and the second is independent of F. This

nonperiodic or secular term is precisely /_ qsee

which was previously derived.

The effect indicated by the periodic term

(Z, qper) can be better understood if its form is

changed as follows

qper = AB (sin 2F cos v_ - cos 2 F sin a)

= AB sin (2 F - a)

where

B = ios2i+l sin2 2 _sin4i

-i cos 2 k cos i
and _ = ± cos

B

holding if sin 2 _ is negative.

with the minus sign

The formulas for A_, At, and AL can each be

expressed in a similar form, and in each case the

secular terms have already been derived. Since

the forms of the periodic terms are not important

for most purposes, they will not be given.

From this point the method of computation

parallels Penzo' s.

6. Drag Perturbation of a Satellite Orbit

The effect of air drag on the osculating orbital

elements of a satellite can be determined using

the approach outlined by Moe and discussed under

solar lunar perturbation. The effect on each ele-

ment is expressed as the change in that element in

one orbital revolution. That is, if the elements

at a certain perigee are a, e, i, _, and a, then
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theelementsatthefollowingperigeewill be
changedbytheamountsAa, Ae, At, Aw,and
At2 (Refs. 37 and 38).

a. Perturbation equations and the drag force

To obtain expressions for these changes,

start with Eqs. (178) through (181), relating the

time derivatives of the orbital elements to the

components of a general perturbing force. A

particular form of these equations, given by
Moulton (t_ef. 1, pp. 404 to 405) and Moe (Ref.

39), is

da 2 e sin 0
- t{ +

(11 213. - e

de

_t-=

d_2

df =

_ 22a _1 e
S

nr

(178a)

e sin 0 FI +

na na e F

]

- r / S (178b)

r sin {0+_) W (178c)

2 i-- e 2na sin i

di _ r cos (0+o_) W (178d)af
na2 i - e 2

d_ r sin (0 + w) cot i W - _1 - e 2 cos 0 R

_f = 2 _1 2 naena - e

nae 1 + e cos 0
sin 0 S

(178e)

t¢ is the component along the radius vector

(measured positive away from the center of the

earth), S is the transverse component in the in-
stantaneous plane of the orbit (measured positive

when making an angle less than 90 ° with the

satellite's velocity vector), and W is the com-

ponent normal to the instantaneous plane (meas-

ured positive when making an angle less than

90 ° with the north pole).

When the disturbing force is caused by air

drag, the perturbing acceleration is

1 _ V2 CD A2 p (r) m B p (K) V2

which has the components,

e sin 0

R = -B O (r_) V V 0 i + e 2 + 2e cos O

F

vIVo| (l+e cos O)

= i
-V a cos

(179a)

(179b)

and

W = -B p (r) V V sin i_
-- a

(179c)

where

B

t_

C D A
=

: mass of the satellite

C D = drag coefficient

A = effective area of the satellite

r = radius vector from the center of the

earth to the satellite

p(r) : density of the atmosphere at r

V : velocity of satellite relative to the

atmosphere

V 0 = velocity of satellite relative to inertial
space

V a = velocity of the atmosphere relative
to inertial space

fl = the angle between V and the plane of
the orbit a

b. Assumptions and approximations

Equations (168a), (168b) and (168c) can also

be expressed in terms of the eccentric anomaly

E, instead of the true anomaly 0. This step is

desirable since the integration of Eqs. (167a)
through (167e) over an orbital revolution can be

most easily carried out by using E as the variable
of integration (limits 0 to 2_r). To facilitate the

integration, the following assumptions and ap-

proximations are made:

(1) The density, p (r), is spherically sym-
metric. It is assumed to change ex-

ponentially above perigee height, i.e.,

-(h - hp)/tt
0 (r) = Op e (180)

where Op is the density at perigee. It

is a function of the height, hp, of peri-

gee above the surface of the earth, tt

is the scale height at perigee altitude

and h is the height of the satellite above
the surface of the earth.

(2) In integrating the effect of the perturbing

force over one revolution, the satellite

is assumed to move along the unperturbec

Kepler orbit. This is a good approxima-

tion because the perturbation has little
effect on the orbit over one revolution.

This is not true during the last few
revolutions of the lifetime. Other

methods must be used to determine the

effect of air drag during that short
time.

(3) The integrand is expanded in the quanti-

ty e (1 - cos E) (which is always small
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wherevertheperturbingforceis im-
portant). Onlythemostimportant
termsoftheseriesare integrated.

(4) Theentireatmosphererotatesat a
uniformangularrateequaltotherate
of rotationoftheearthaboutits axis.

Severalinvestigators(Refs.40and41)have
carriedoutintegrationsusingvariantsofthe
aboveapproximations.Sterne(Ref.41),for
example,inadditionto treatingtheproblemwith
a sphericallysymmetricatmosphere,alsomade
a morerefinedanalysistakingaccountofthe
atmosphere,sflattening. However,for altitudes
above200nautmi or 370km, theneglectofthe
diurnalbulgecauseserrors, whichovershadow
theimprovementobtainedbyconsideringatmos-
phericflattening. ThiswasshownbyWyatt(Ref.
42). Moreover,fluctuationin thedensityof the
atmospherecausesuncertaintieslargeenough
thathighlyrefinedexpressionsfor thechangesin
orbitalelementsarenotwarrantedfor mostpur-
poses.

c. Approximatechangesin osculatingorbital
elements

Givenbelowaremethodsusefulin simplified
programs,basedonapproximations(1), (2), (3)
and(4). Mostoftheresultswereobtainedin
seriesform,butonlythedominanttermsare
givenhere. ForhigherordertermsseeSterne's
paper(Ref.41).

The case of ae/H > 2. When the parameter

ae/H "- 2, the changes in the orbital elements per
revolution are

Q[I+I e+3e2]
8c (i - e2T

Ai = -D(1 - e) 2

f*

(181a)

(181b)

(181c)

1
A_2 = -D (1 - e) 2 1 +

(1 - e) 2

(181d)

/x¢_ = -A_2cos i (181e)

where

Q = 2Bppa2 f (1 +e) 2 (2w_)

(1 - e2) 1/2

:/2

e = ae/H

292 1/2
e (1 - e) 1 - e

f = 1 - --_- (l@@ee)

t2

e fl/2 (2_rc)- I/2
D = 2_B _- a pp

cos i

e
angular rate of rotation of the earth,s

atmosphere in inertial space (2_r in

approximately 24 hr)

It might also be useful to know how the radius of

perigee, q, changes in a revolution; q is simply

related to a and e through the equation

q:a(1 -e)

Thus, the change in q, when ae/H >2, is

Aq = -Q T%-_ 2c (181f)

and the change in the period can be found from the

change in a through the relation

/"-/-= (_)/',a/a

The case of ae/tt < 2. When the parameter

ae/H 2, the appropriate changes are

Aa = -G (1 + e) 3/2

(1 - e) 1Tg )1 - 2e) I ° (c)

+ 2e 11 (c)] (182a)

Ae = - Ga _I 1 - e t (1 - e) II(C)

+_ [Io (c)+I2 (c)] I (182b)

/',i =-K t½ lip(C)-I2 (e)] +(cos2_0)[I2(c )

-2e I 1 (c)]l sin i (182c)

£a = -K [I2 (c) - 2e I 1 (c)] sin _cos

(182d)

A= : -Af2cos i (182e)

and

&q =-G_,T-__ [(1- _ e) I ° (c) - (1

e ,]- 3e) I 1 (c) - g 12 (e (182f)

where

CDA 2 -c

G = 2Tr m a ppf e
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CDA "qea pp_-e-eK = _ m n

andIn is theBesseIfunctionof imaginary argu-

ment and nth order. The secular time rate of

change of the elements may be obtained by

dividing Eqs. (181a) through (1810 and Eqs. (182a)

tht'ough (182t) by the KL-pler period,

, =2_a 3/2/ _.

From Eqs. (181) and (182) it can be seen that

the rotation of the earth's atmosphere relative to
the satellite affects the inclination, node, and

argument of perigee of the orbit. If there were

no atmospheric rotation co =0), only the semi-e

major axis and eecentcieity (hence the height of

perigee) would be affected.

The orbital parameters most sensitive to

drag are the heights of apogee and perigee, the

period, and the eccentricity. The rea_son for this

sensitivity is primarily the fact that V relative to

the atmosphere is not vastly different than V rela-

tive to space. Thus, the perturbing force is

nearly planar and therefore affects semirnajor

axes and eccentricity.

The procedure for evaluating the effects due

to drag is now clear: First the element variations

are computed, then the elements are adjusted and

the process continued. If a sufficiently small in-
terval of time is utilized for the stepping proee-

dure, say 1 revolution for satellites above ap-

proximately 180 kin, then the element changes

will be sufficiently small so that they may be

added to those produced by the sun, moon, ablate-

ness, etc., to produce a first order approximation
to the total solution. Numerical data and discus-

sions of the planar effects are presented in Chap-
ter V (Satellite Lifetime). Thus, graphical data

will not be included at this point. Data for the non-

planar parameters will not be prepared because

of the fact that too many parameters are involved

to make such a presentation meaningful. Rather

it is suggested that these effects be evaluated for
each orbit.

d. Contribution of random drag fluctuations

to error in predicted time of nodal cross-

ing of a satellite, assuming perfect initiai
elements*

If the period is known to be exactly P(0) during

the zeroth revolution, then the period will be pre-

dicted to be P'(n) during the nth revolution. This

prediction will be based on the average rate of

change of period during the preceding revolutions.

But suppose there are random fluctuations about

the average change in period. Let these random

fluctuations be O1, 02 ..... Oj ..... ON •

Then after N revolutions the period will actually
be

N

PiN) = P'(N) + _ 0j

j=l

• This subsection was included as "Appendix E.

Special Derivations" in Flight Performance
Handbook for Orbital Operation, STL report

prepared under Contract NAS 8-863.

The time of nodal crossing will be predicted
to be

N

t'(N) = t(0) + ) P'(n)

n=l

while the actual time of nodal crossing will be

N N

t(N) = t(0) + Z_, P'(n) + _

n=l n=l

r(n)

_V}l(_re

n

r(n}- _ 0j-

j=l

The error, E(N). in the prediction is

N N n

E(N) = -_ r(n) = - _, _ pj.

n=l n=l j=l

This double sum can be written out explicitly as

E(N) = - [C01) + (Oi + 02) + o m

(01 + O2 + . . . + ON) ].
+

Rearranging terms, we obtain

E(N) = - [NOl + (N- 1)P2 + " " " + ON] D

(183)

Case a: Fluctuations Independent from Revo-

lution to Revolution. If each pj is independent

and has the standard deviation F, then the

standard deviation of E(N) is

Grms(N) =- E(N)rm s = n

n=l

= F _LN(N + 1) (2N + 1)t6]
1/2

(184)

Case b: Fluctuations Correlated over 25

Revolutiohs. On the other hand, suppose that

e_n o--d-g--_--drag fluctuations are perfectly cor-
related over intervals of 25 revolutions, but in-

dependent from one interval to the next. A 25-
revolution interval is chosen because it is the

usual smoothing interval in published orbits.

We begin with Eq (183).

Since the accelerations are assumed to be

correlated over intervals of 25 revolutions,

Pl = P2 = " " " = Pq = PA

0q+ 1 = 0q+ 2 = • . . = 0q+25 = 0 B

0q+26 = Pq+27 = " " " = Pq+50 = PC
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Thefluctuationsin accelerationaboutthe
smoothedvalueare illustratedin the following

sketch.

Pn

+_ OA PC ' PD

,y////////#oB ,
0 q q _ 25 q _ 50

n = [_.evolution i_unlbc't"

The possible values of q range from 1 to 25.

In the absence of particular information, all

values of q will be assigned equal weights. When

n = 1, p = PA" When n = 2, p will equal PA if

2 < q< 25, and O = PB if q = 1. When n = 3,

O = PA if 3 < q< 25, and p = PB if q = 1 or 2, etc.

The equal weighting of the 25 values of q can be

expressed by averaging over the ensemble of

possible values, that is

Pl = PA

P2 = (1/25) (24 PA

P3 = (1/25) (23 PA

+ pB )

+ 2 pB )

..... .°°..°....,...°..°.

P25 = (1/25) (PA + 24 pB )

P26 = PB

P27 = (1/25) (24 PB + PC )

..... ,**....,°,,.,,,,,,,

050 = (1/25) (pB + 24 pC ), etc.

The timing error, averaged over the ensemble

of possible values of q, is found by substituting

these pj's into Eq (184).

= - [NPA + (N - 1) (24 PA + PB)/25

+ (N - 2) (23 PA + 2 pB)/25

+ ... + (N - 24) (PA + 24 pB)/25

+ (N - 25) PB + {N - 26) (24 PB

+ pc)/25 + ... + (N - 49) (PB

+ 24 pc)/25 + (N - 50) PC

(N - 51) (24 PC + PD )/25 + "''J
+

for all (N - k)_0 ... (185)

Collecting coefficients of PA' PB' and PC

I_et

= - (04/25) __25 N + 24 (N - 1) + • b •

+ (N - 24)] - (0B/25) [(N - 1)

+ 2(N - 2) + ... + 24(N - 24)

+ 25(N - 25) + 24(N - 26) + ...

+(N - 49)] - (pU/25) [(N - 2fi)

+ 2(N - 27) + ... + 24(N - 49)

÷ ...] - ...

for :_11 (N - k) -. 0...

a(N)- [25 N + 24(N - 1) + ... + (N - 24)] .

b(N) _ [ (N - 1) + 2(N - 2) + ... + 24(N - 24)

+ 25(N - 25) + 24(N - 26) + ...

+ (N - 49)]

c(N) =- [(N - 26) + 2(N - 27) + .,. 24(N - 49)

+ 25 (N - 50) + 24(N - 51) + ,..

+ (N - 74)]

d(N) -= [(N - 51) + 2(N - 52) + .,.

+ 25(N - 75) + ...]

e(N) - .., etc.,

for all (N - k) > 0.

If the standard deviation of pj is e, and each pj

is independent, then the standard deviation of

E-(NY is

Krm s (N)_ [E--(NY]rms = (a/25)[a2(N)

1/2
+ b2(N) + c2(N) + ...1

d (186)

In case N <- 25, a(n), b(n), and c(N) are calcu-

lated as

b(N) = (N - I) + 2(N - 2) + ... +24(N - 24),

for all (N - k) -> 0
and for N _" 25

N -1 N-1 N -1

=Z q(N- q)= N Z q-Z q2

q=l 1 1

= N2(N - 1)/2 - N(N - 1) (2N - 1)/6

1)t2]
for N < 25

a(N) = 25(N + N - 1 + ,.. + 1) - b(N)
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a(N)=25N(N+ 1)/2- b(N).

for N < 25

c(N)= 0. for N < 25.

In caseNis greaterthan25, thecontribution
of thefirst 25termsinEq(185)to b(N)is

24 24 24

bl(N) = _ q(N- q)= NI q -Z q2

q=l i 1

bl(N) = 100 (3 N - 49),

for

a(N) is then given by

N "> 25.

a(N) = 25(N + N - 1 + ... + N - 24) - bl(N)

a(N) = 625 (N - 12) - bl(N),

for N -. 25.

We define b2(N) to be the contribution to b(N)

of all those terms of tile second 25 terms in gq

(185) for which the quantity N - k is positive.

For N - 25, b2(N) = 0, and for N -. 26, b2(N) is
given by

b2(N) : a(N - 25),

for N--, 26.

biN) is given by

b(N) = bl(N) + b2(N).

The quantities c(N), d(N), etc., are given by

c(N) = 0, for N .- 28

c(N) = b(N - 25),

for

d(N) = 0, for

N-. 27

N,/ 51

N-. 52

d(N) = b(N - 50),

for

etc.

Comparison of Case a and Case b. The limits

of t___ and uncorrelated

errors will now be calculated, to show how the
two cases are related. For uncorrelated errors

(Case a), take the limit of Eq (184).

lira F [N(N + 1) (2 N + 1)/6] 1/2 = F(N3/3) 1/2

{187)

For correlated errors (Case b), take the limit of

Eq (186)

lira (CL/25) 1([625 iN - 12} - 100 (3N-49)] 2
t _

+ [100 (3 N - 49) + 625(N - :}7)

- 100 (3 N - 124)]2 +
.l continued

r

+/100 (3 N - 124) + 625 (N - 62)

100(3N 199112+...f112

: lira a {[13 (N - 8)] 2 + [25 (N - 25)] 2
N -_o-

+ [25 (N - 50)] 2 + ...} 1f2

Let N = 25 M, where M is an integer. Then tile
above limit becomes

M ,.,lira (25) 2 _ + (M - 1) 2 + (M - 2) 2

M -_

+ 12 - M 2 + [(13125) (M - 8125)] 2} 1f2

= lira (25) 2 a {M (M + 1) (2 M + 1)t6
IVI_ _

- M2 + [(13/25)(M- 8/25)] 2} 112

= lira (25) 2 a _(M (M + 1) (2 M + 1)/6[( 112

M -_m •
t ]

1/2 112
= (25) 2 cr (M313) = 5_ (N313) (1881

Thus, the limits (5) and (6) for correlated and

uncorrelated errors approach the same asymp-

totic form for large N. This makes it possible

to evaluate the constant F, whicln must equal 5_.

The relationship F = 5_ corresponds exactly to
the situation in the theory of errors, in which

the standard deviation of the mean of k indepen-

dent observations equals tile standard deviation

of one observation divided by the square root of k.

The asymptotic form Eq (188) is a convenient

approximation to represent the error contributed

by random fluctuations, when tile initial elements

are perfect. The satellite accelerations, i.e.,

the rate of change of the period published to

July 1961, furnish no evidence for choosing be-

tween Case a and Case b, because they arc
smoothed over intervals of 25 revolutions.

7. Radiation Pressure

Above a height of 500 naut mi or 926 kin,

radiation pressure usually has a greater effect

on the orbit of an artificial satellite than air drag

(though for ordinary satellites, the effects of

radiation and drag both are very small). How-

ever, both effects are significant for balloon

satellites since the area-to-mass ratio is large.
(The area-to-mass ratio of the Echo I balloon

satellite was 600 times that of Vanguard I.) At

first glance it may appear that it is possible to
handle this force as was done in the previous

section_. However, this is not the case because

of the fact that the earth affords a shield from

the sun's rays during a portion of the orbit. This

shadow effect is investigated in detail in Chapter
XIII,

Kozai (Ref. 43) has integrated the pertur-

bations of first order over one revolution, in

terms of the eccentric anomaly, E. The satellite

leaves the shadow when E equals E 1 , and entcrs

the shadow when E equals E 2. (Reradiation

from the earth is ignored. )
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Theperturbationsoveronerevolutionare
givenby

5 a = 2a3F (S cos E + T _1 - e 2 sin E)IE21

__ I E1

E2 (189)
I

+ T (-2e sin E + _ sin 2E)

E 1

(190)

8i = a2F W [ {(1 + e2) sin E

e } _1 e 2- 2[ sin 2E cos _, + - (cos E

e2[ cos 2E) sin w

- _- e W cos ¢_ dE (191)

e _ _l e 2- 2[ sin 2E sin _ - (cos E
]

- 2[ cos 2E) cos ¢_

- g e W sin_ dE (192)

5_ = - COS i 5R+ a2F _1_ [ S(esinE

1
+¢ sin2E) +Tq{-e 2(eoosE

1 3
- 2[ cos 2K g SdE (193)

E 1 '

2_

5M = - _ _0 6__.a_aaaM - _1- e 2 8w

_1 - e 2 cos i 6_

I{ e }- 2a2F S (1 + e 2) sin E 2[ sin 2E

e 2E) E2- T _1 - e 2 (cos E- 2[ cos

E 1

3/' ]_- e SdE (I94)

where the limits of integration are E 1 and E 2

unless other values are written; S and T are the

expressions of S(0) and Tie), in which¢ is re-

placed by w, that is,

s = s(o),

T = T(0).

(195)

If the satellite does not enter the shadow dur-

ing one revolution, the terms depending explicitly

on E vanish, and, in particular, 8a vanishes.

In the expressions of 5w and 5_, indirect
effects of the solar radiation pressure through

and {_ must be considered as

dSw _ di 6e + di 5i+ dJ. )dt de di -_ 5a,

(196)

d6_2 d_ 5e + d_ d{2 5a.
dt - de a-i- 6i + d-a

The disturbing functions S(0), T(0), and W
are

2i 2 c
S(0) = - cos _ cos _ cos (k 0 -'b - _z)

2i 2e
- sin _-sin _-cos (Xn +_ - ¢)

I {cos ( X.0 ¢sin i sin _ - )

- cos (-Xo -¢)}

. 2i 2 _
- sin _-cos _-cos (_2 - k O - _)

2i . 2 e
- cos -2 sm _ cos (-),0 - _ - _)'

2 _ (197)

W = sin i cos 2- sin (k 0 - 12)

2 E

- sin i sin 2- sin (k 0 + a)

- cos i sin , sin k 0 (198)

where k 0 is the longitude of the sun, and e is the

obliquity. The expression of T(0) is obtained if

cos in S(8) is replaced by sin except for the trig

onometrical terms with an argument i, _, i/2,

or ¢12.

The conventional symbols are used for the

orbital elements: a is the major axis, e the ec-

centricity, i the inclination, [2 the node, _ the

argument of perigee, M the mean anomaly, and

0 the true anomaly. In addition,

¢ =0+¢o

and

p = a (1 - e2);

n2a3F S(0), n2a3F T(0), and n2a3F W are three

components of the disturbing force due to the

solar radiation pressure in the direction of the
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radius vector of the satellite, in the direction

perpendicular to it in the orbital plane, anti in the

normal to the orbital plane; and F is a product of
the mass area ratio, solar radiation pressure,

and a reciprocal of GM.

The smallness of the effect of radiation pres-

sure on an ordinary satellite is illustrated by the

orbit of Vanguard I{Refs. 44, 45 and 46).
Radiation pressure periodically changes its height

of perigee by about one mile. The effect of rad-
iation pressure on the period is obscured by the

fluctuations in air drag. Bolh radiation pressure

and air drag would have had very small effects on
a conventional satellite at the original perigee

height of Echo I, but both effects were magnified

by the area-to-mass ratio, which was, 600 times
that of Vanguard I. The consequent large effects

on the rate of change of period are shown in

Fig. 10, which originally appeared in Ref. 45.
The correlation of air drag with the decimeter

solar flux is also shown to persist to this great

height (see Chapter II). Note also in Fig. 10 that
radiation pressure sometimes has no effect on

the period. This occurs when the whole orbit is

in sunlight. [E 2 = E 1 + 2_ in the expression for

8a of Eq (194).]

The radiation pressure sometimes acts to in-

crease the period. Echo I was the first satellite

for which this was observed (l{ef. 45). It was

also the first satellite for which the eccentricity

was observed to increase. This can be clearly

seen from the increasing distance between peri-

gee and apogee in Fig. 11, which is modified

from the NASA Satellite Situation Report of

.luly 18, 1961, though For most satellites the

eccentric, ity has decreased during the lifetime.
Detailed behavior of a salellite due to this per-

turbation cannot be tabulated in a parametric

form due to tim large number of factors affecting

the solution. These factors include longitude of

the nodes, orbital h_elination, position of the

earth in its orbit and semimajor axis and eccen-

tricity of the orbit. Thus, it is necessary to ob-
tain a particular solution for the perturbed rates

of the elements given a set of desired elements,

then incorporate them in a numerical manner with

the rates produced by other forces.

The analyst is urged to consult a _rowing body

of literature for this perturbative influence.
Some of these references have been collected and

presented as Refs. 1, 34, and 43 through 57.

8. Satellite Stability,

The study of satellite stability concerns thc

long term orbital behavior of artificial satellites.

It attempts to provide the mission analyst with

answers to such questions as: ttow will the various

orbital elements change? What will be the magni-

tude of these cbanges? Will their pattern be highly

erratic or regular? Will there be a change in the

pattern from erratic to regular or vice versa?
In order to answer these and other questions it is

necessary to combine the perturbing forces acting

upon the satellite orbit and their effect upon the
various orbital elements of interest for a particu-

lar mission.

This section discusses some apl)roximate

methods for dealing with satellite stability

problems. The formulas and methods given
here can be used to: (1) construct approxinmte

computer programs, which arc much fasler and

cheaper than "exact" programs, (2) solw_ some

satellite stability i)roblems without the need for

a high speed computer; (3) help in gaining more

insighl into the hehavior of satellites.

Section C2 of this chapter discussed the ap-

proximate method of M. Moe and presented most
of the formulas which will be used in this sec-

tion. The following discussions present some of

the results obtained using this method. Although

only earth satellite results are given here, these
methods have also been used extensively for

lunar satellites and can be applied to orbits

about other planets. Part 2 illustrates a method

for computing satellite trajectories by band.

Care must be taken not to use the methods of

this section on orbits which are physically to()

large, in which case the approximations for
luni-solar perturbations break clown. While

definite rules cannot be laid down, Table 4

should prove helpful. The table lists the various

bodies and the approximate upper limits where

"very good. " "good, " and "fair" results can be
obtained. The parameter used is tim period of

lhe satellite in day, s.

TABLE 4

Validity of the "Approximate" Method as

a Function of Orbital Period (days)

V ery
Good Good Fair

Earth 2. 4. ')

Moon O. 5 i. 1.5

Mars 45. 60. 90.

Venus 15. 25. 35.

Mercury 5. 8. 10.

A special case arises for very remote earth

satellites which do not pass near the moon.

These may also be treated by approximate meth-

ods aml in these eases some orbits wilh periods

as long as 45 (lays can be studied. For this class

of orbits the effects of the moon are ignored and

the sun is treated as the only disturbing body.
Another class of orbits for which the rnethods of

1his section are not very helpful is the very

near earth orbit where drag and oblateness

perturbations are predominant.

Accurately predicting the future history of an
artificial satellite is difficult and expensive.

Fortunately approximate methods often give good
results. This section discusses approximate

methods which have been extensivel.y used for
lerrestrial and lun'ar satellite orbits.

It is convenient to consider the slahitity of the

orbit of an earth satellite as a two-body problem

with i_erturbations introduced by the sun, moon,
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earthshape,dragandradiationpressure. These
effectsmustbeanalyzedseparatelyandthen
combined.Thisprocedureis accomplishedonly
afterallowingfor thefact thatthevariousequa-
lionsrefer to differentplanes;theresultscan
thenbesummedtoyield theneworbit. The
processcanthenberepeated.

Performingthisoperationbysliderule or
deskcalculatoris veryslowandrequiresabout
8 hr to computethechangefor onerevolution,or
1 man-yearfor 1monthof thesatellitersorbit.
However,thecombinedequationscanbeeval-
uatedonal_ighspeedcomputersuchastheIBM
7090at therateof about5rev/sec. Subsequent
paragraphsof thissectiondiscussresultsob-
tainedin thelatter manner.

Whenhighspeedcomputersarenotavailable,
goodresultscanbeobtainedbyusingthesecular

terms to estimate the results over many revolu-
tions. This method is illustrated in Part 2.

Part 1: Sample Results by "Approximate"
Method. Early in 1961, a study {-__s

made at STL to determine the lifetimes of earth

satellites in highly eccentric orbits. The project

was the Eccentric Geophysical Observatory
(EGO). Some of the results of this study will be

used to illustrate the approximate method and

the general problem of orbital stability.

The experimental objectives of Project EGO

made it desirable to keep perigee height as low

as possible consistent with lifetime require-

ments. A graph of the suggested nominal an-

swering these requirements is shown in Fig. 12.

'['his graph will be discussed in detail since it

illustrates most of the important features of this

type of orbit. The initial conditions in terms of

equatorial spherical coordinates are given in the

figure. These were the suggested burnout con-

ditions of the missile which were to inject the

satellite into orbit. The resulting orbital param-

eters ill terms of equatorial coordinates are as
follows :

a = 32, 879 naut mi k = 135. 617
= 60,892 km

e = 0.891057 Launch time =
3 hr 30 rain GMT

i = 31. 289 °
Launch date =

lla= 41. 796 ° 1 April 1963

The most important parameter in the EGO
study is perigee height oz" equivalently perigee

distance q and to the first order, the only per-

turbations affecling q are caused by the sun and

the moon. The periodic term for the hmar per-

turbations of q may be written as

±qper = AmBm sin (2F m + a m)

where A m, t3 m, and_m are as given in Section

(15 of this chapter. Therefore the moon causes

the satellite's perigee to alternately rise and

fall. The period is one-half the moon's sidereal

period or a little less than fourteen days. The

amplitude for EGO-type satellites is about 40
naut mi or 74 km. The sun has a similar effect

but the period is one-half year and the amplitude

is about 200 naut mi or 370 km. Figure 12 is a

graph of perigee height versus time. Note that
the moon waves are shown only for the first 100

days. The rest of tim curve shows the envelope

of minimum perigee height. This simplification
is adopted for all similar graphs in this section.

Note also that the moon waves should be just a

sequence of separate points plotted at 1.73-day

intervals since perigee is reached only once

each revolution of the satellite whose period was

1.73 days.

Now consider the combined secular effect

caused by the sun and moon. This is given by

the following formula which is derived in Section

C5 of this chapter.

1 \(Am sin 2w sin 2A qsec = - 2 m tm

+ A¢ sin 2_¢ sin 2 i ) (199)

where

= 15 ft _ a 4 e _ - e 2Am m

and

e _i -e 2.

are positive constants.

4
A =15H _a

E S

Recall that H ant II
m S

Note that the subscripts m and _ indicate moon

plane and ecliptic [)lane parameters. Equatorial

parameters will be indicated by the subscript _t

in the following discussions.

Initially, the nominal orbit had equatorial

parameters i a = 31.29 ° , t_c_ = 41.80 ° and

= 135.62 ° , and w = 94.68 ° , i = 20.30 ° ,_c_ m c

_ = 87.47 ° , and cc = 85.69 °,respectively. At
E E

the end of 402 days, the orbit parameters take
on the values: a = 32,793 naut mi or 60, 733 kin,

e = 0.8893, ic_ = 37.58 ° , tin = 8.55% _a = 181.38 °,

i = 16.11 ° , _ = 187.07 °, i = 14.75", and
m m ¢

_ = 167.96 °. Note that the secular trend is now

nearly 0 which is again shown in Fig. 12. At

the end of 554 (lays, the orbit parameters are:
a = 32, 779 naut mi or 60, 707 kin, e = 0. 8902,

ic_ = 36.87 ° , _2 = -1.65 ° , _c_ = 195.61 °,

i = 16.77 ° , _ = 214.50 ° , i = 13.45 ° , and
nl m ¢

= 198.43 ° . The secular trend is now negative.

Now a brief discussion will be given of the

other figures in this section. In the initial EGO

study(Hcf. 58), the burnout conditions of the

missile were given. The only _arlation per-
mitted was in time of launch. A series of satel-

lite lifetime runs (Ref. 59) were made on the

IBM 7090 with 1 April 1963 as launch day. The

first ran was at 0 hr GMT, the next at 2 tit- and
so forth to 24 hr. The results are illustrated m

Fig. 13.

At first glance, it is surprising that merely

changing the launch time wouhl have sucln a large

effect on the satellite's future history. This
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behaviorresultssincechangingthelaunchtime
of daychangesthesatellitets nodallongitude
(as) At 0h, 9 = -10.849. Fromthenon_2
increasesby 30. 083 ° for each 2 hr added to the
launch time. This, of course, is due to the

earth rotating 360. 996 ° in 24 mean solar hours.

Changing t_c_ does two important things. First,

it changes the phase of the sun and moon desig-
nated by F and F . For EGO-type satellites,

Ill (

the moon's periodic effect is only about 40 naut
mi or 74 km in amplitude and t_ence is not too

critical. The sun's periodic effect, however, is

very important. Secondly, changing _2c_ changes

the ecliptic and moon plane parameters of the

orbit and hence changes the secular" trend of the

satellite. The secular trend is large and posi-
tive for the 8-, 10-, 12-, and 14-hr orbits.

In Fig. 14 comparison is made between ap-
proximate results as obtained from the Satellite

Lifetime Program (Ref. 59) and results obtained

by integrating the equations of motion in a way

that is essentially exact• Note that the agree-
ment is good.

Figure 15 illustrates how oblateness indirectly

affects perigee height even though its direct

effect is zero to first order. It does this by

changing the equatorial inclination ia and the nodal

longitude _'_a" This in turn changes ttle ecliptic

and moon-plane parameters i_, tc_, i m, and _,m.

This then changes tile secular effect as is shown.

In Fig. 16 the effect of leaving out the effects
of sun or moon is demonstrated. Here the nomi-

nal graph is shown in comparison with the same

orbit computed with the sun only and with the

moon only. Note especially the difference in
secular trend.

The effect of making various changes in the
initial parameters of the nominal orbit is shown

in Figs. 17, 18, 19 and 20.

The graph of the 6-hr orbit for a period of

10 yr is shown in Fig. 21. This orbit illustrates

an important ptmnomenon. From the secular

trend in perigee distance given by Eq (185) it

follows that A qsec depends mainly on tile incli-

nation and argument of perigee. The inclination

does not change very rapidly; however, the argu-

ment of perigee is perturbed very much by oblate-
ness and to a lesser extent by hmi-solar effects.

As ia increases, oblateness perturbations get

smaller (0 < i < 63.7 °) and as a result _ and
-- -- m

o. change slowly. Thus tlle secular term can be
E

nearly constant over a long period of time. If

this i_appened when the secular trend was down,

the satellite would probably expire. This effect

also explains the short life of most lunar satel-

lites (Ref. 58).

Part 2: ltand Calculation of an Farth Satellite

()rbT_e_l-_] _o_tiTiTm by revolution ap-

proximate calculation of a satellite orbit is too

slow and tedious to be practical by band. tlowever,

the process can be accelerated by treating the

perle(tic and secular terms separately.

To illustrnte this method, part of the tra-
jectory of the EGO Nominal will be calculated

(see l'i_. 12).

Consi(ler first the periodic term for tile

humr perturbations (given in Section C2 of this
chapter).

Aqper(mt ) = A m B m sin (2Fnt -c_ m)

wl]ere

II = 0.68736 x 10 -18 (naut mi) -3 was

m cvahlated in Part 2.

A = 15.3 naut mi = 28 3 km
m

B = 0. 961
rn

C_m = -170"64 °

(Note that thc minus sign is taken when

sin 2w m is negative. )

The parameter Fret denotes the angular

position of the moon measured from the satel-

lite's ascending node at time t (see Fig. 9).

This parameter is given by the following formula.

Fret= (t - tin) n m - "_mt

whore

tin = time the moon was ai its ascending
equatorial node

2r
n m = moon's angular rate = _----

Ill

Simt= satellite's moon-plane ascending
nod(, measured from the moon's

equatorial node

t = time.

If time is measured in clays, and angles in degrees

and if the initial time t o = 0

then

t = -6. !)658 days (ephemeris)
m

n = 13.176°/day

[7 = 67.58 °
Ill

t = 0 (initially)

F = 24.14 °
ITI O

Fret = 24.14 + 13. 176 °

where t is measured in days.

Substituting the computed values of Am, Bm,
and o givesm

Aqper (rot) = 14. 7 sin (2 Fret + 170. riO)

= 14.7 sin (218.92 + 26.352 t).
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Theperiodof thesatelliteonceagainis I. 73
days. Hencetheperiodictermaloneindicates
thatthemoon'sgravitationalfield will pushthe
satellitedownfor fourrevolutions.Thesatellite
will thenbeat a minimumheightasfar asthe
periodiceffectof themoonis concerned.From
thenonthisperiodicmotioncanbeignored (see
Fig. 12).

EvaluatingAqper(mt)for timet =0, t = 1.73,

t = 3.46, and t = 5.19 days, and then summing

gives the initial downward push by the moon to
be 36.2 naut mi or 67.0 krn.

Consider now the periodic term of the sun's

perturbation in perigee distance as measured
from the center of the earth (q)

Aqper(¢t) = AE B_ sin (2F t - c_ )

where

A = 7.03 naut mi _ 13 km

B =0.961

o = 171. 38 °.
E

The parameter p e t is given by

=(t- t ) N -_Z °Pet e e _t

t = - ii.4258 days
E

n = O. 9856 °/day
E

s, = 87.47 ° whe. t = II
et

Thus

= - 76.21 o.
P_0

Pet = - 76.21 + 0.9856 t °

where t is measured in days.

Combimng the above equations gives

Aqper(et) = 6.59 sin (2 p i - 171.38)

= 6.59 sin (36.20 + 1.9712 t).

Note that the sun's periodic effect ks initially

upward. But after aboul 146 days, this upward
move is cancelled. The satellite than has about

18.4 days or eleven revolulions to reach a min-

imum. Evaluation &qper(e t) at time _ = 147.05,

t = 148.78, t = 150.051 , . • - , t = 164.35 that
is, once each revolution from time t = 147.05 to

t = 164. 35 -and summing yields the ne_ downward

push of the sun as 21 naut mi or 39 kin. The
satellite will then be at a minimunl height as far

as the periodic effect of the aim is concerned.

From then on this periodic motion can be ignored

(see Fig. 12).

Now consider the combined secular effects of

the sun and moon on perigee distance q:

= 1 (A m sin sin 2 _. +/"qs ec - _ 2_m m
\

\

+ A e sin2,_, sin 2t e )

Aqsec = +0.(/319 naut mt/rev. = +0.0591 km/rev

Assuming the various parameters are relatively

invariant during the first 164.35 days, the secular

rise in perigee height for this period can be com-

puted as

= 164.35
EAqsec -TT-T_ (0.0319) = 3.0 naut mi or

5.6kin.

The combined periodic and secular results indi

care that perigee height should have decreased by

36.2 + 21.0 -3.0 = 54.2 naut mi or 100.4 km.

This checks reasonably well with the results

show}l in Fig. 12.

Better results could be obtained by summing
the secular perturbations over perhaps 20- or 50-

day intervals and taking into account changes in

the parameters e, tin' _m' ie and _c' (in such com-

putalions the periodic terms in these parameters

are not important). The main difficulty here

would be in converting solar and lunar perturba-

tions into changes in the equatorial parameters.

Using this method with, say, 50-day steps

should yield results of fair accuracy for many
satellite orbits. For example, the 0 hr, 2 hr,

8 hr, 10 hr, 12 hr and 14 hr would be quite easy

to compute by hand (see Fig. 13). Hand com-

putation of the orbit of a lunar satellite is also

easy because the moon,s equator is very close
to the ecliptic, and because the sun,s effect is

very small compared with the effect of earth.
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A. INTRODUCTION

For most of the low altitude orbits for satel-

lite payloads it is either interesting or necessary

to study the effects of the atmospheric perturba-
tions on the orbital elements of the satellite and

on the lifetime. (Some material of this sort is

in Chapter IV; however, the scope of the previ-

ous discussion of this subject is not adequate for

the present task. ) Many analytic approximations

to these effects are presented in the literature;

however, in obtaining these solutions approxima-

tions have been made which at times drastically

restrict the validity of the results. For this

reason, it is the purpose of this chapter to present

not only the information but also higher order

solutions to the nonlinear equations of motion for

the effects of atmospheric drag. The combina-

tion of these effects with those due to gravitational

accelerations, etc., will not be discussed beyond

the statement that such a process requires the

simultaneous utilization of special perturbations

and general perturbation techniques as discussed

in Chapter IV. (The present analysis, of course,

falls into the latter category.) As a matter of

fact, special perturbations will be utilized even

in this study in the integration of the analytically

determined decay rates.

It is believed that this approach is inherently

more accurate than those utilizing either general

or special perturbation techniques alone. It

should be noted in support of this statement, that

even though numerical integration of the equations

of motion has become increasingly popular with

the advent of faster digital computers, special

perturbations have three definite limitations:

(l) Loss of numerical accuracy, if long

integration times are involved (hun-
dreds or thousands of revolutions).

(2) Long running times even with IBM 7090.
or 7094.

(3) Lack of general trends, since only iso-
lated particular cases are solved.

As an additional step to enhance the value of the

results, the analysis will be conducted, where

possible, carrying the density as a parameter.
Thus, the final result of the study will be of value

for all atmospheres. This advantage is quite

significant due to the fact that the atmospheric

models are constantly changing and the fact that
there are seasonal and other variations (discussed

in Chapter II),

In order to develop an appreciation of the ma-

terial and methods of analysis, this chapter will

be presented in three basic parts:

(1) The drag force.

(2) Two-dimensional atmospheric perturba-

tions.

(3) Three-dimensional atmospheric perturba-

tions.

B. THE DRAG FORCE

As a preface to the discussion of atmospheric

perturbations, certain phenomena and techniques

must be presented. These discussions will be

divided into three general areas:

(1) Gaseous fl0w regimes.

(2} The force exerted by tile atmosphere
on the vehicle.

(3) Tumbling satellites.

Each of these areas will be divided in turn into

discussions of the factors necessary in subse-

quent discussions. In particular they are slanted

CDA which
toward the evaluation of the quantity -2-m--'

will be designated the ballistic coefficient,

1. Gaseous Flow Regimes

The work in the field of aerodynamics has

been divided into investigations in four general

regions or flight regimes:

(1) Continuum flow.

(2) Slip flow.

(3) Transition flow.

(4) Free molecule flow.

These regimes are defined in terms of the Knudsen

number:

K N
k mean free path

:_ = characteristic length of body

In Cp M= 2---_v i_ N for small R N (Ref. 1)

M

R7 for large R N

where

Cp/C v = ratio of specific heats

M = Mach number

V

C-_Pvg RT

R N = Reynolds number

Though there is overlap of the regions, and though

no truly definitive numerical values of K N for

these regions exist, generally accepted values

for the four flight regimes are:
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Continuumflow--KN< 0.01.

Slipflow--0.01<KN<0.1.

Transitionflow--0.1 <KN< 10.
Freemoleculeflow--10< KN.

Theseflowregimesareillustratedin thefol-
lowingsketch(Ref.1):

I JI] liiYf

it) f} 1_ 10 2 it) ] _a 4 11]5 10 @ ]q7

lteynoLd_ Number

It is noted that in addition to the defining lines men-

tioned above, a second set of lines denoting alti-
tude is also included on this figure. It is also

noted that for any satellite above the altitude of

100 slat mi (161 kin), the flow is always free
molecule and that free molecule flow could be

considered to extend down to as low as 75 star mi

(121 kin) without introducing significant errors

in the analysis. Since this region (121 to 161 kin)
is the lowest possible altitude for even moderate

durations in orbit, the entire lifetime analysis

can be conducted, based on the assumption of
free molecule flow. This assumption, however,

makes it necessary in subsequent calculations to

stop the decay analysis or integration at the afore-

mentioned altitude of 120kin (_400,000 ft). At

this altitude the mean free path is 20.49 ft (6.25

meters); thus the Knudsen number for all but ex-

tremely large vehicles is such that the analyses
will be valid.

2. The Force Exerted by the Atmosphere on
the V e hicl-e

In order to determine the drag coefficients

analytically it is necessary to study the mech-
anism by which the force is exerted on the satel-

lite. This step will be accomplished in the fol-

lowing analyses utilizing the work reported in

Ref. 2 as the basis for the discussions.

Let _:', _' and _' be the velocity components

of a molecule of gas relative to the mean velocity
of the gas. In addition, assume that the distri-

bution of these velocities is normal--i, e. , that

the number of molecules with velocities in the

region x to x + dx, etc., is

3/2

exp +
• °

+ :_,2)] dx' dy' dz'

where

N O = the number of molecules per unit
volume

K = the reciprocal of the square of the
1

most probable velocity = 2-RT

R = universal gas constant

T = absolute temperature

These molecules impact on a surface whose

velocity components in the same coordinate sys-

tern are iV, mV, nV (_o m and n being the direc-

tion cosines for V). Thus, the velocity relative
to the surface is

x = x _ -_V

y = ;_ - mV

Z = Z ! - nV

and the distribution of the impacting molecules

with velocities x +_Vto x +_V +dx0 etc., is:

= % (exp -K Fx ÷ _V) 2

+ (y + mV) 2 + (z ÷ nV)2]) dx d; dz

It is noted at this point that while either positive

or negative values of y and z are permissible,

only negative values of x wiI1 yield impacts; thus
the total number of particles of all velocities

hitting the surface is
0

-KE(x +iV) 2 + (; +mV) 2

+ + nV)2]) d z

N O __ 2 V 2 K

2( -f e

N0_V-
+  LI+ erf (IV _-")]

where

l v r-K 2
(if)- 2 e-S ds

erf (_v _ o

At this point it is possible to relate the number

of particles hitting the plate to the mass and hence

to the momentum transferred. The force acting

on the surface is the integral of the momenta
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imparted by the molecules for all possible veloc-

ities. Assuming for the moment that complete

energy transfer is made and that the direction

cosines of the stream are II, re'and n', this

pressure on the surface is:

p = - p(w K--) _ dx dy k(_' X

+m' #+n' z) exp (-K [(x +iV) 2

+ + 2+(z+nV>2])dz

V_ (_' + ram' + nn') e

2
V 21 K

[ " 7]+ +_ (_' +ram' +nn'

2K V 2

• [-1 + erf (1 V _)_}

This estimate is not correct, however, because

of the molecules impacting the surface. Some

are reflected specularly (i.e. , according to
Snell's law), while the others are temporarily

absorbed and reflected diffuseIy (i.e., in random

directions) at a later time. For specular reflec-

tion, the effective pressure is thus,

Peff = 2 p

while for diffuse reflection, the equation remains

unaltered. Thus, the two types of reflection

bracket the actual process and the true force can

be written

p = (2 - f) Pincident + f Preflected

where

f is the fraction of the total molecules which

is diffusely reflected. (Experiment indicates

the value lies in the range 0.9 < f < I. 0. )

At this point attention is turned to the computation

of the drag and lift coefficients, defined as follows:

D _PD dA

¢'!

L _ _PL
dA

CLA =
1 V_2 p V 2

Since dA is a function of geometry and orientation,
these coefficients can be defined for various shapes.

The succeeding paragraphs present data for C D

both for specular and diffuse reflection (see Ref. 2).
Note is made that the surface temperature, which

is calculable as a function of the same set of

variables, has been included in the diffuse re-

sults. The derivations are in themselves not

unique or necessary for this discussion; thus,

only the final forms will be presented. Additional
material may be found in the reference and in the

literature.

Sphere (A = w r 2)

ISpecular C D = erf (M®) + _ 2 M

2
-M

Diffuse C D = CD + w
specular Ti

(lb)

where T is the surface temperature obtained
W

by iterating the following equation:

= Ti +
U T w

Tw 3 plR q_

V
M = speed ratio - __

{2RT

T. = temperature of incident stream
l

[3 = surface emissivity

<_ = Stefan-Boltzmann constant

surface

_M 2

_ e + erf (M ) (M +

for a monatomic atmosphere of

oxygen and nitrogen in the shadow.

Since the properties of the atmosphere are

integrally associated with this evaluation of these

coefficients only specific data can be generated

for C D. An example of the application is pre-

sented in Fig. 1. This figure, obtained from

Ref. 2, presents C D as a function of M and for

an altitude of 120 kin. Though computations for

this figure were made with atmospheric data
available in 1949, the variations which are shown

are representative and the limiting values, which

are rapidly approached, valid for this reference
altitude. Data for other altitudes must be gen-

erated as needed.

Flat plate at angle of attack _ to the flow (A = ab)

For this body configuration the drag coefficients

vary according to the following equations:
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2 2
2 -M s in

4 sin _
-- e

Specular C D IV[ _-

+ (_2 sin c, + 4 sin 3 --°/ erf (M sin o)

(2a)

2 2
-M sin

2
Diffuse C D -- e

M _

+ 2 sin _ _1 + 1_ erf (M sin c,)

k
c_

+ F sin2 I T
c_ W

M_ T i (2b)

where T is obtained from
W

4F_Tw _ P N0--0 +2 R T i - _ R T sin

Cone with axis parallel to flow (A : 7r r 2)

-M 2 sin 2 O
2 sin 0

Specular C D = M _(-v-- e

+(_-- + 2 sin20/ [1 +erf (M

[Diffuse C D = M sin0 _

÷ U;C/ _ _ 2

sin20

2M I _ L

sin 0)1

(3a)

l+ 12M _-
oo

sin 0 )]

(3b)

where T is obtained from
W

Tw 3 p IRe + =Ti 1 +3 M_ 2

and where 0 is the half angle of the cone, These

results can be extended to nonzero incidence angles
by utilizing the flat-plate results mentioned earlier.

Such calculations are presented graphically in
Fig. 2 (Ref. 3).

Right circular esflinder with axis perpendieu-
Ihr to flow (A = 2r L)

__ 2 _ M 2nF(2n--_--31oo
Specular C D M (-1)n '

n . r" (n + 2)

n=O

4 ,-,,"
n=O

2
$70

(-1) n
M=2n F (2n2_ Q

n [ i' (n + 2)

(4a)

2n (2n+ 1_

f M F ----0--
Diffuse CI) M ___ n . F (n + 1)

n= 0

.3/2 / Tw

+ _ V Ti

+ I + (-1) n
n----7, F(n + 2)

n=0

(4b)

where T is computed from
W

I'-'- 4
_r[3 _ tKT T. F

w = ' L"M_2oR _2--

+ g - (-1) n _
n I F(n+l)

0

M 2n F(_J)_

+ Z_ _ (-1)n n.--2-- T-(_4-_J

Figure 3 presents data comparable to that

discussed in conjunction with the sphere. Of

particular interest is the fact that this coefficient

approaches a limit which is not unlike that of the

sphere.

Circular-are ogive (A = rr r 2)

This figure is constructed by rotating an are of

a circle about its chord then cutting the body of
revolution perpendicular to the axis at its mid-

point. The angle of the nose (20) analogous to the

half angle of the cone is utilized to describe the

shape,

Specular C D = 1 - cos 0 + (1 - cos 0)

-M 202

cos o + _ +

+ erf (M 0) + --2- -
2 M 8 M

(5a)
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1 I(1 + j--_ (1-cosO)Diffuse C D = 1 - cos O 2
oo

2 2

+ e _ 0 0 3

_- 2M +

4 +
4 _ _

+e _ -

where T is obtained from
w

4 oN FI V 2 .5

p Tw +g RTi -_RTwlsinO

To provide a feel for the validity of these re-
sults, tests have been performed (Refs. 3 and 4)

and data prepared for the transverse right circular

cylinder. The results of these tests are shown

in Figs. 4 and 5. These figures depict the varia-

tion in the critical region for molecular speed
ratios in the vicinity of 0.7 to 2.5. The agree-
ment between these data and the theoretical values

is observed to be very good. Also noted is the

tendency for the results to agree better at higher

values of the speed ratio with the specular reflec-

tion theory than with the diffuse theory and vice-

versa at the lower speeds.

3. Tumbling Satellites

The preceding discussions have presented

data for bodies fixed relative to the flow field.

However, in most satellite applications this is

not the case. The first class of such exceptions

consists of those satellites which by design orient

themselves relative to the earth or space in order

to perform some mission. The time history of

attitude for this vehicle is thus known, and a time

history of the drag coefficient can be constructed.
The second class of vehicles consists of those

which tumble in both time and space, thus com-

plicating their aerodynamic description. One

path around this impasse is to describe the param-

eters statistically and assume that they are inde-

pendently distributed. This approach, while not

rigorous for either class of exception, provides

a convenient means of computation for the latter

case and an approximate method for long time
intervals in the former case. Consider the fol-

lowing sketches.

Top

Side

Now approximating the effective drag coefficient

based on one of the surfaces (say A l)

, A 2

CD = CDI cos _ cos _ ÷ CD2 _I cos >i sin

A 3 A 4

+ CD3_- 1 cos ot sin = + CD4 _ sin _ sin 3:

where a and _ are uniformly randomly selected

variates always lying in the range 0 to lr/2

C D is the affective drag coefficient for

the body

A is the reference area for the nth geo-

n metrical shape

Since the distributions of a and _ are known

2

(the joint density function is (2) ,. it is desired

to determine the distribution of the function C D .

This is accomplished as follows:

* Ig (CD* ' _) = f [a, _(C D , _}] 8=_:_=____.

0 CD"

but _ {CD*, c,)must be obtained from

#

C D = a 1 cos _ + a 2 sin _

a 3 cos (_ - w)

where

A 2

a 1 = CD1 cos a +CD2 _ sin

A 3 A 4

a 2 cos _ + sin
: CO3 _ CD 4

a 3 cos w =a 1 "] w =tan -1 (a2/a 1)

] or Ja 3 sin w =a 2 a 3 = al 2 +a2 2

thus .

+ W

also

0 CD _:5-' sin _ + a 2 cos :Z

-i
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or,

O C_ : -a

+a 2

I
+ CD

a 3

sin

2 a22 2a I + = C 5 cos c_ + C 6 cos c_ sin

2
-I + C 7 sin c_

+wl
c° Ec°s /

sin + a 2 a3 cos w

CD* _I - 1

=f- al

+ a 2

a3 -

thus

2

g (C D , _) =

The distribution of C
D

L a3 a 3

a_

.2

C D (a22 - al 2 )

2

a 3

is obtained at this point

by integrating g (CD* , o) with respect to c_over

the range 0 to Tr/2. First, however, it is nec-

essary to replace c_ in the joint density function.

2] f a12 + a22
2 ,2

al +a22 - CD ia22 -al 2)

A 2

a12 = (CD1 cos c_+ CD2_ sin c_) 2

= (C 1 cos c_ + C 2 sin c_) 2

2

a 2

= C12 cos 2 o + 2 C 1 C 2 cos c_ sin c_+ C22

A 3 A 4

= (CD3_I cos _+ CD4 A-Tsin c_)2

= (C 3 cos _+ C 4 sin c_)2

• 2
sin a,

= C32 cos 2 c_+ 2 C 3 C 4 cos c_ sin _+ C42 sin 2 a

2 2 2
a 2 - a 1 = C 8 cos o + C 9 cos c_sin

2
+ C10 sin c_

At this point it is noted that the area A can be
2 2 1

selected so that a 2 > a 1 ; thus, since c_ and =-

are always between 0 and _/2 the function defined

is everywhere positive in every term. Thus,
the absolute value signs can be dropped

and

2

_-" 2-i . i
__Tr d. COS O_ Sln O_

oI sin ff

i=o (_)

This function may be approximated analytically

upon studying the behavior or integrated numer-

ically. Analytic integration, however, does not

appear attractive. It is noted that for the special

case of 2-D analysis this problem is circumvented,

since integration is not required. For this case

(CD*) is obtained directly to be:g

where

2 2
a 1 = CD1

2 2
a I + a 2

2a 2 = CD2 3

A 2, A4, CD2 and CD4 do not appear in this form

for the reason that only a 2-D analysis is made.

Thus, if the vehicle is tumbling in a known plane

this much simpler solution can be utilized.

The density function is known or at least de-

finable for the 3-D case and known analytically
for the 2-D ease, the problem turns to one of

evaluating the moments of the distribution. These

moments may be obtained directly from the mo-

ment generating function in the following manner:

, Fu,x x,m(t) .... n f(x 1" Xn)
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dr ]-- m(t) = '
dt r t =0 _ r

where

/_'1 = the mean

2 _,i 2a -- /_w 2 -
= the variance

Substitution for this problem into the previous

formula yields:
Tr

0 0

+ h 2 cos asin_ + h 3 sin _cos

+ h 4 sin _ sin ?_]_ d odT_

JJ
where

A.

= CDi _11h i _-- i = 1, 2, 3, 4

But this problem, like the first, is not easily

integrable• Thus, a numerical evaluation is sug-

gested for each case of interest. In fact, even

for the 2-Dcase, in which

: I = d C D"-_ C 2 CD*2

where

2

CD1 CD3 _Yl
C =

1 z

2

an analytic form is not readily available.

Since the mean is not available in analytic fo_m,

little can be said relative to the best value of C D

A 1 in the general problem• Many investigators

avoid this problem by using the approximation

derived from consideration of a spherical satel-
lite•

CD*A = C D (Asurfac e)
sphere

I 1Asurfaee of sphere
t

Aprojeeted area of sphere

= CDsphere( su4face

Though this may seem to be a crude approximation,

there are many cases in which it is reasonable.

In fact, Hcf. 5 reports an investigation in which

a body randomly tumbling (about three princ [pal

axes) is analyzed and in which the author concludes

that for convex surfaces the average drag on a
surface element in random orientation is the same

as that on a sphere of equal area. This work thus

lends credibiiity to the previous assumption and

provides a numerical value which can be utilized
as an initial estimate in the numerical calculations

outlined previously.

C. TWO-DIMENSIONAL ATMOSPHERIC

PERTURBATIONS (REF. 6)

The motion of a point mass in a nonrotating

atmosphere surrounding a central force is given

by the following set of simultaneous differential

equations

"r'=_ -r0 2 -g_ t

- - B0dV
r

--_(r2O) =-S_VrO
dt

where

I .2V = (r _)2 + r

p = earth ws gravitational constant

dO
= d_- = angular velocity (rad/see)

(7)

CDA = ballistic coefficient
B =_Vm--

(8)

It is noted that this set of equations is nonlinear

and that a solution can be obtained only by nu-

merical integration. This fact is somewhat dis-

concerting, since these equations neglect atmos-

pherie rotation, which introduces considerations

of a third dimension and complicates the analysis

further by entering the equations explicitly in the

drag term. This latter factor results in the re-
placement of V as defined previously with

V
r

= velocity relative to the atmosphere

=1 V +V2tml

Thus, if analytic approximations are desired, it

becomes necessary to divide the problem into two

phases--a perturbed orbit phase and an aerody-

namic entry phase. In the first phase, a region

is considered where the orbit is determined by the

inverse square gravity field and only small per-

turbations are caused by the relatively small drag

forces. In the entry phase, the aerodynamic forces

(lift, drag, etc.) become the important factors

influencing the trajectory of the satellite and grav-

ity forces become less important. This last phase

is by far the more complicated, and fortunately
for a lifetime study it can be neglected, since rel-

atively short periods of time are spent at the alti-

tudes where drag forces become dominant. Thus,
the present problem is the analysis of only the

first phase. References 7 through 20 present a

portion of the pertinent literature and will be

discussed as the presentation progresses.
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1. Near-Circular Orbits (approximate solution)

To initiate these discussions, consider the

decay of a circular orbit. The energy loss due to

drag during one revolution, AE D, is given by the

loss in total energy

AE D = ET1 - ET2

(9)

Using the equation for circular velocity and letting

A r = r 2 - r l •

AE D - uAr (10)
2r 1 r 2

The energy loss per unit mass due to drag is also
equal to the drag force per unit mass integrated
over a full revolution

A E D = _ _D . ds (11)
• m

Assuming small altitude losses during each single
revolution

AE D _- ,

r 1 + r 2

where _ - an average radius for the

revolution.

(12)

Now using the approximation that the circular

velocity is averaged approximately as

V 2 = 2p (13)
c rl+r 2 '

Eqs (12) and (13) and the relation D = _pV 2 yield
m

AE D = 2=pBPa v (14)

At- _- r 2 and Eq (10) with
If rl << 1, then r 1 r 2 av

Eq (14) results in the decay rate of the orbital
altitude per revolution

Ar - 4_rB 2 (15)
rev Pay ray

Ar by
This decay rate can be converted to se----c

considering that the orbital period for this per-
turbed circle is

I rT = 27 av
-5--

Thus

= - 2 B Pay rav (16)

Equation (16) shows that the decay rate for this
special case is a linear function of tile ballistic
coefficient. This fact will be utilized in much of

the future work in order to restrict the number of

variables in the analysis. Equation (16) is not

directly integrable because of the odd fashion in

which the true density varies. However, if the

density is assumed to vary exponentially with

altitude, approximate lifetimes for circular orbits
can be obtained:

tL rf

j dt = l -dr
,j --_l"C-(r - ra) /------ (17)

0 r o 2BPoe v.r
where

rf = the final radius = R + 120 km

r + rf

P0 = the density at the o_2 (see Figs. 6a

and 6b)

K = the negative of the logarithmic density

slope (see Figs. 7a and 7b).

(Note: This data is for the 1959 ARDC Atmos-
/)here. Data for the U.S. Standard 1962 Atmos-

phepe is presented in Chapter II. Either can

be utilized if the lifetimes are adjusted, as will
be discussed on p V-20.)

Thus

[f

TL = -1 ! __
-I_ r

2 _p" B p0 e a 0
/

let

e-K rdr

2
x = Kr

2x =A_2 f;dx
2xdx = Kdr or dr = -_ dx _"

Thus

-Kr dr = 2 dx;fe K_f

r0 ii-_- _-_ Y e-x2

= _[erf /K_f)- erf ( K_o)]

and

-K r

TL = e erf

2 _'_ B p0

The disadvantage of utilizing this form for the com-

plete ltfetirne is that the density does not vary

exponentially, and thus the approximation becomes

poorer as the difference in r 0 and rf becomes large.

This deficiency can be circumvented through the

simple expedient of breaking the true radial inere-

ment into several subdivisions and evaluating the

times required to descend through eaeh interval.

These times can then be summed to yield the life-

time. Computations utilizing this philosophy will
yield accurate estimates provided that the intervals

are no larger than 50 stat mi or 80 km.
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The case of even slightly elliptic orbits must

be treated in a different fashion since the assump-

tions made in generating circular orbit lifetimes

are not valid for other orbits. Thus, it is neces-

sary to consider the equations of variation of ele-

ments derived in Chapter IV or to approximate the

motion in some other fashion. If the latter approach

is taken, one possible avenue of investigation is to

linearize the equations of motion by expanding the

variables in Taylor series and retaining only first-

order terms. This approach is valid only for

small variations in the parameters. One such in-

vestigation is reported in Hcf. 12. The author

utilizes a small parameter _' defined as

_. = BP0r 0 (19)

All orbital parameters are expressed as power

series of /3, considering onlythe first order terms

r = r 0 + /3' r 1

0 = 00 + /3' el

V = V 0 + /3' V 1

H = H0+_'H 1

(20)

where

H = r 2 0 is the angular momentum per unit

mass (to differentiate from h = altitude).

Substituting Eq (20) into the differential equations,

Eq (7), the following relationships are obtained

0 = e 0 1 4- --_0 2 eO -

r = r0 f11+2BP0re (sine0 -80_)1 (21)V V c + BP0r0 (-2 sin O 0 +O 0

H = H011 - BP0r0O01

where

V t
C

80 -
r 0

Expressions for these quantities on a per revo-
lution basis are next obtained from the differences

in Eq (21) evaluated at the limits 00 = 0 and 2w:

/Xr 2

rev - 4wB P0 r0

AV - 2wBP0r0V c (22)rev

2XH
__ = _ 2BP0r 0rev

dVr-----

= {_ and c _But, for circular orbits V c _ -

_ 12r _-_ ' giving the following condition:

AV V c
= _ 1 Ar (23)

rev 2 r rev

Now, from the first two relationships in Eq (22),

exactly the same relationship follows:

A V V c A r

rev 2-_ rev

This implies that for a first order approximation

in B P0 r0 the speed at any given altitude remains

exactly equal to the eireuiar speed during the drag

decay of a circular orbit.

And, from Eq (21) for 00 = 2Tr the corresponding

angle 0 is obtained as

e = 2w + 6_ 2Bp0r0 (24)

Equation (24) indicates that the line of apsides is

advancing by the amount

/x_ = 6Tr 2Bp0r0 (rad) (25)

Since the equation for the change in the radius per
revolution is the same as that for the circular

orbit. The lifetime of this slightly elliptic orbit

will be the same as that presented earlier. Ac-

tually, as will be shown later, the lifetime is

slightly longer, but a quantitative analysts is left

until subsequent paragraphs. These subsequent
discussions will concern the behavior of these and

other more elliptic orbits.

2. Elliptic Orbits (approximate solution)

The type of expansion outlined for near-cir-
cular orbits can also be utilized for elliptic orbits

as was shown in Ref. 12. This reference pre-

sented power series expansions for decay rates in

elliptic orbits utilizing the smali parameter

/3 = B P (hp0) rp0 (26)

where

p (hp) = air density at perigee radius

rp0 - initial perigee radius.

Next, a density ratio is defined

a 0 " p/p(hp0).

For these orbits Eq (7) becomes

"" rV
r - r;---_- - /3a 0 --

r rp0

1 _(r2_) = _ /3a0 reV

rp--_--

Using a change of variables u _-, and

neglecting higher order terms in 3, the

power series expansions assume the fol-

lowing form:

u *Uo+3U 1 1
V TM V 0 + _ V 1

H = H 0 + /3 H 1

(27)

(28)
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Now the ratio of the Initial speed at the perigee

radius to the circular speed at rp0 is defined as

c - VP---_° (29)
V

C

and the corresponding eccentricity is expressed as

- - 1 - --[- - 1 (30)
kJ

An exponential atmosphere is assumed in the form

-K (r - rp0)

e o- p-_ -e (31)
I

The differential equations given by Eq (27) are then

solved for the two cases below:

Case I : near-circular orbits

Case II: eccentric orbits

Case I--near-circular orbits. The solutions

derived by Ref. I2 are summarized below. First,

the orbit parameters:

r _)2
+ _(K p0 - _2 (Krp0 ')3]

K rp0

+sin0 [Krp0E (1 -Krp0'

!_Krp0')] +sin3G--72 )J_

{32a)

rp0 I + E cos_ - 2B 1 + ¢ cosO 1

, c) 2 ]_ Krp0 + _(Krp0 _ __ (Krp 0,)3 0

_ _(Krp 0,)3 0 cos0 -

+ (Krp0,)2+ (Krp°

(Krp 0 ()2

(1 - Krp0,) sin 2024

(Kr 0''3 I}- 5_6 _ sin 30 (32b)

Second, the decay rates obtained from the above

equations :

revA-_H. _ 2rrBp(hp0)Vp 0 rp02 [l_Krp0_

1- _Krp0 E

,)3] sin 0

+ _(Krp0_)2- _(Krp0_)3 ] (33a)

r--_"r(E) = 2n)- r(0 " 0) ffi- 4 wB p(hp0)rp02

_ Krp0_ + _(Krp 0()2 _ T_(Krp0,)3 ]

(33b)

Ar
a

rev--'r(0 - 3_)- % -.)

• 2 h +,_2 [1: - 4 lrB p(hp0Irp0_T-:-i] -- - I<rp0,

+ _ (Krp0()2- ]_F_[ (Krp0')3 ]

(33c)

Note that for E = 0 both Eqs (33b) and (33e) reduce

to the circular decay rate given previously by
Eq (22).

The given series expansions are adequate only

for small values of K rp0 _, the upper limit beIng

suggested as Krp0E <0.5. Reference 12 gives the

following table, indicating the upper limits of
eccentricity for various altitudes from sea level

satisfying this condition:

hp0 __K

(kin) (stat rot) (_-1) (m-l) i

161 100 9.3 x 10 .6 30.5 x 10 .6 0.0025

322 200 5.1x 10 -6 16.7 x 10 -6 0.0045

483 300 3.65 x 10 .6 12.0 x 10 .6 0.0061

(1 star mi = 1.609 kin; 1 ft = 0.3048 meter)

Case ]]--elliptic orbits. For values of

Krp0¢ >l, terms up to the seventh power were

carried. The resulting series expansions are
shown below.

- K rp0 _ (CH ,,rp0 Vp0 - e 1 0

7

n=l

r

r
p0

Cn+ 1 sin nOll (34a)

-Kr
p0

B p( )rp0 e
e 1 - hpo1 +

1 + _ cos 0 I + t coa 0

" L[2Clo - C 20 cos0 + C* sin0

_2
_C 3 sin20 - _C 4 sin 30--1_ C 5 sin40

_1 c8 _]}T_ C6 sin5G + _3 C7sin 60 +T_ sin7

(34b)
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where

C 1 = 1 +_(Krp0,)2 +_T(Krp0,) 4

+ _(Krp0,)6 +...

c2. Krp0'+ (Krp0,)3+r (Krp

I

+ _63-2 (Krp 0 _)7 +...

C3 = _(Krp0,)2 + _(Krp0 ,)4

+ _7_ (Krp0 c)6 + ...

C4 = _(Krpo,)3 + ]_]_(Krp 0,)5

+ _2 (Krp0 e)7 + ...

C5 , _(Krp0_)4 + _./_(Krp 0,)6 + ...

C6 . _0.ff(Krp0,)5 + _2_.gly(Krp 0 4)7 +...

C7 = __4_(Krp 0 _)6 + ...

= i (Krp 0 ,)7 +C8 2, 358, 720 " " "

C*= - 2CI +C2 +_C3+ _C4+_C5

+
The accuracy of the series solution is limited

to a region near the perigee, due to expansion of

a 0 aroung the perigee point. Therefore a limiting

central angle, elim, was designated, such that

p-_ _ 0.01 for 0 < eltm" The limiting angle is

given as

,
cos011 m = \ c/_ 4. 605 - %- "

(34e)

_+i
P

For p-_ < 0.1 the constant 4.60 is replaced by
14

2.30, Figure 8 presents 01i m plotted versus the

orbital eccentricity for two values of density

ratios and two initial perigee altitudes. Since

the air density has decreased to 1% of the perigee

value at a central angle of Oli m, the following

assumptions can be made:

(1) The drag effects are negligible for the
arc BCD.

(2) All the drag takes place in the region
DAB.

(3) A symmetry exists about the line AOC

(f. e., DragDA • DragAB).

C

_ellm IA _ eli m
+2_

Therefore, the ch_rlge of orbital radius at a cen-

tral angle Olim is expressed as

Ar = rB' rB + 2_) -re-"_ - = r(61im r(_lim)

= r(_lim) - r(- 61im). (35a)

From Eq (34b)

Ar
m

rev

-K c

{Bhpor oerpo- I #, cbsO C16

- C 2_ cose + ...]I 011m (35b)

J) - 011m

But

A, = (-_) Aa
(36a)

From the chain rule

A r = _(_a) A a+ 0(_e) A, (36b)

and from Eqs (36a) and (36b) it can be shown that

the following orbital parameters can be obtained

from Eq (35b):

Aa ~ (i+, cosO) 2 Ar (37a)

(I - ¢)Z (I - cos _)

Ah ~ 2(1 + , cos6) 2 Ar (37b)

a (I - c) 2 (1 -cosO)

Equations (37a) and (37b) are based on the assumption

that Ah >> Ah . Thus the apogee decay rates can
a p

be obtained by the expansion of a small parameter

method by Eqs (35b) and (37b). For perigee decay

rates no information is given by this solution.

3. Variation of Elements

As was noted in the previous paragraphs, a

second method of solution for the effects of drag
is available in the form of the equations for varia-

tion of elements. These equations will be utilized

in the investigations of elliptic orbits which follow.
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Since the interest in this discussion is in the

solution for the lifetime of a satellite in a nonro-

taring atmosphere, the disturbing acceleration

will be due to drag and wLll act along the velocity

vector that is tangent to the path. Thus, since

S = (1 + ¢ cos O) T + (e sin O) N

I I + _2 + 2¢ cos 0 I 1 + ¢2 + 2¢ cos O

R =

where

(¢ sin O) T + (I + _ cos O) N

J1 +¢2 + 2¢ cos 0 Jl +¢2 + 2_ COS 0
! Y

S = circumferential disturbance

R = radial disturbances

T = the tangential acceleration

N = the normal acceleration -= 0

= the eccentricity to differentiate from the

base of natural logarithms

The equations of variations of constants can be
written as

da = 2 _I + ¢2 + 2¢ cos 0 T

a 2n - E

de _ 2 i - ¢2 (cos 0 + c)

na _/1 + 2 + 2_ cos O

cl_ _ 2 _1 - 2 sin 0

_[- na

_i + E2 + 2_ cos 0

T

T

do-

Hi- = 2 (I - e2) (i + ¢2

+ ¢ cos 0) sin 0] [nae (i

+ _ cos 0) (i + ¢2 + 2_ cos 0) I/2 ] -i T

dn dt
_- - 0, _t- _ 0 (38)

where

n = _ mean angular velocity

T = _ D drag deceleration.
m

From Eq (38) it follows that for a nonrotating
atmosphere, drag does not cause any variations

in the inclination or the nodal position of the orbit.

Aerodynamic drag will, however, cause a forward

rotation of the perigee in the orbital plane, as was

shown quantitatively in Eq (25). An appreciation
of the reason for this advance can be obtained

from the following qualitative analysis.

Consider a slowly decaying elliptical orbit as

shown on the sketch. Take points i and 2 as
shown in the sketch in such a manner that the

angle from perigee is constant.

Then O1 _ 02, r I > r 2 and Pl < P2' From the

basic equations of elliptic orbits

V 2 =_ [ 1 + 2¢1 _ ¢2cos 0 + ¢2 ] (39)

From Eq (38)

6=2 BO sin0 _-

The ratio "w/_ 2 t_eeomes

1 + ¢2 +2¢ cos 0

I _¢2 J
(4O)

1/2/- 1 + 2 + 2¢ cos O1 1 1

2
1 + _2 + 2¢2 cos 0 2

_¢] )1/2 sin"
Then for the first order of eccentricity

But,

--,--_1 _1 _2 < _ii)a2 " (1 + ¢1 c°s 01)"_1 1/2_1 + ¢2 cos 01
_°2 P 2

I + E 1 cos 01

1 + _2 cos 0 2 _ 1

(41)

a2 ¢2 Pl
-- < 1, < 1 and -- < 1
al K P2

&l
Therefore 1-- < 1 and the perigee advances

¢o2

due to air drag as was stated. This advance does
not affect the lifetime of the satellite to the order

of approximation of this analysis; however, since

the atmosphere is not considered to rotate, den-

sity need not be considered to vary with posi-
tion around the earth. Thus, the orientation of

the orbit while it changes does not change thc de-

cay history (again, to this order of approximation).
For this reason, attention can be focused on the

change of the thrce elements in the plane of the

/2
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orbit (a, E and a). Further, since o relates posi-

tion in the orbit as a function of time and not a

change in the size or shape of the orbit, tlle ele-

ments of primary concern are a and _. Variations

in both of these elements are discussed in the fol-

lowing paragraphs. However, before these dis-

cussions it is desirable to relate the change in

altitude of apogee and perigee to the changes in

the elements a and c.

The altttuae variations during one revolution

are quite large for elliptic orbits with high eccen-

tricity, and therefore it is necessary to pick certain

reference points during one revolution, for which

the altitude, air density and decay rate can be

found more easily. Since this geometry of a two-

dimensional ellipse is completely determined by

the perigee and apogee altitudes, and since air

drag occurs primarily in the vicinity of perigee,

apogee and perigee radii will be utilized as the

reference points. These radii are expressed in

terms of the semtmajor axis and eccentricity as

= a(1 + ,)
ra (42)

/rp"a(1 - _)

Now, orbital altitude is given by h i = r i - R e ,

where 1R is the radius of the equivalent spheri-
e

cal earth. Therefore the partial derivatives be-
th. 8r

1 1

come, since _ = Ox

aha P = 1 -
"8"5-- =I+_ "8"K'-

(4 3)
8h

8ha P = - a
-8-_- = a -_-

And from the chain rule for derivatives

dha 8ha da 8ha dt
--dt- =-_ - HY + -_i - Wf"

dhp 8hp da 8h d_
-dy-= a_y_- _[- + ,_-_ _-

(44)

Substituting Eqs (43) into Eqs (44) yields

_ i(l+')dhp +a _[-

(i - _) da dE_t- - a _t"

(45)

Thus, after the time derivatives of semimajor

axis and eccentricity are determined from the

Lagrange planetary equations, the time rates

of the perigee and apogee altitudes can be found

by substitution. The instantaneous orbital alti-

tudes can be determined by integrations of Eq

(45) either by numerical or analytical expres-
sions.

Assuming an orbit with a very high eccentricity,

the significant part of air drag takes place near

the perigee and the maximum variations of orbital

parameters can be found approximately by setting

cos 0 _ 1.0. Equations (38) heaome

da = 2 (I + ,) T "_

n 1-E

de 2_f; - t 2
_..= Tna

and the ratio of a to _ is found as

_ = T-=--i or _f-
C

(46)

dt

(47)

Substituting Eq (47) into Eq (45) yields

Ht -= HI-=2

dhp = dE dE
a_"-a_ -=0

(47a)

Equations (47a) indicate that orbits with large ec-

centricities tend to become more circular during

the drag decay process. For highly elliptic orbits

the perigee decay rate is zero for a first approx-

imation and in all cases it is considerably smaller

than the apogee decay rate, as proven by numeri-

cal integrations (Ref. i0).

Now continuing, using the expression for
drag deceleration

T D BpV 2 (48)=___ = -
m

Equations (38) become

da 2 a 2
BpV 3

dt p
(49)

d_ee=-2pV (cos 0+ _ )
dt

Substituting for V and 0 from

V 2 p (1 + 2_ c%s 0+c 2): (50a)
a i-_

2

dt r (50b)

_= 2 f 2na 1 -_

the equations for the variation of elements can be
expressed as derivatives with respect to the cen-

tral angle 0. At this point it should be noted that

Eq (50b) applies rigorously only if angular mo-

mentum is conserved, i,e., r20 = ._= na 2 tl- 2.

In Ref. 17 the correct expression is given in terms

of the osculating elements as

'Ir + ¢0 + cos i dl-I = (51)
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However,asseenfromEq(25)
A_

= 37rBP0 r 0 (rad/rad).

But since i>> ¢_ , Eq (50b) is justified for the
O

present analysis• Thus, Eqs (49) become

(I + 2_ cos0 + _2) 3/2da
= _ 2a2Bp

H_" (I + E cos 0)z

de ¢2)I(1 + 2_ cos0 + _2) 1
a-_ = - 2aBp(l - 0)2(I+ , cos

• (cos e + ,)_

Next, the functions of the central angle are

expressed as functions of the eccentric anomaly

by the following relationships :

r =a(1 --_ cos E)

sin0 = _ - c2 sinE
I - _ cos E

cos E - c
COS @ "

I - E cos E

2- E

uu I - _ cOS E
dE

(52a)

/2

(52b)

(53)

Substituting Eq (53) into Eq (52) and using the approx-

imate symmetry relationship of drag decay functions

2g

0 0

The decays per revolution are found by the follow-

tng integrals:

r---ev_a = -4a2BP0 ff_P0 (i+_ cos E) 3/2 dE
(1-c cos E) "i-/2

0

(54a)

Ae - 4aBP0(1-c2) _ zrev p (1+_ cos E) 1/2
/2 COS E dE

0 P0 (l-c cos E) ]

(54b)

Note that Eqs (54)basically involve the application

of the Krylov and Bogoliuboff averaging method (Refs.

13 and 14), by which approximate differential equa-
tions are obtained for the variation of orbital
elements by averaging the original equations over
one full revolution (i.e., E = 0 to E = 2_). This

removes all trigonometric terms from Eqs (54)

and is actually equivalent to a conservation of
energy approach (Ref. 14, p. 238).

The fraction in Eqs (54) can be expressed in a

simplified form by employing power series ex-

pansions as:

A__%a = + 2c cos E
rev

0

+ (continued)

3 3 3 7 4
+_-E2cos2E+ [ cos E+_-E cos4E

+..-/ dE (55a)
l

Ae

rev

ff

_0 os E + _ cos 2 E
0

i 2 3 1 3 3 4 5
+ 2- E cos E + 2-c eos4E +_-_ cos E

+ ...] dE (55b)

In general, the density function P_ is empiri-

P0

cally found (see atmospheric models)and cannot be

expressed in a simple exact analytical form. Thus,

the analytic integration of Eqs (55) is not possi-

ble. Numerical integrations of Eqs (54) or (55)

can be performed on a high speed digital com-

puter, however. If this step is to be taken, the

density is related to eccentric anomaly in two

steps:

(i) Altitude: h = r - R = a (i - e cos E)

- R e
e

(2) Density: p(h) from atmospheric density

tables. (56)

3 2 2

Defining S = 1 + 2e cos E + 2-e cos E + ....

and dropping terms higher than the second power

of eccentricity (Ref. 12) has numerically com-

puted the function of the integrand in Eq (55a) for

Explorer IV, considering both Smithsonian 1957-2

and ARDC 1959 model atmospheres.

The most important conclusion from this study

and related studies performed elsewhere is that

even for orbits of relatively small eccentricities

(Explorer IV had • = 0.14). The most significant

portion of the drag perturbation takes place in the

vicinity of perigee in a region where IEI < 40 °.

Utilizing this conclusion (not the limit on IE])

and approximating the density in this region by

an exponential, Eqs (55) can be put in an integra-

ble form. Let

-K(h-hp)_-P = e (57a)
PO

where K is the negative logarithmic slope given

in Figs. 7a and 7b. Equation (57a) implies a

straight line variation of p versus h on a semilog

paper, which does not exist for any altitude range.

Nevertheless, for a relatively small region, say

50,000 ft (15 kin) around the perigee point, this

approximation is valid to a very high order if an

instantaneous value of K is selected.

r
P

Using relationships r = a(1 - e cos E) and

= a(1 - _), Eq (57b) can be written as

-Kae Ka( cosE
P - e e (57b)

P0

Now substituting Eq (57b) into (55a, b) yields
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Aa _ 4a 2 e-Ka_ f eKa( cos E (i + 2 _ cos Ere---'v = BP0

0

+ ...)dE (58a)

T{"

Zx--'2-erev= -4aBo0 (1-'2) e-Ka' _ eKac cos 7. (cos E

0

+ _ cos 2 E + ...) dE (58b)

The integrals above could be evaluated in the

form of modified Bessel functions of imaginary

argument, if the brackets contained a series of

sine terms. Therefore, at this point a further

crucial approximation is introduced. It is as-

sumed that significant drag exists only near the

perigee. This assumption breaks down for very

small eccentricities (i.e., as _ -*0), but the va-

lidity of it is good for moderately elliptic orbits.

Assuming that sin 2 E << i then cos n E can be

written as an infinite series of sines for odd n or

as a finite polynomial in sines for n even. The

first five sine expansions are a_ follows:

cos E = I -½sln2E -_sin4E --_sin6E

5 8
--f'2-g sin E- . . .

eos2E = 1 - stn2E

cos3E-1-_sin2E+ _sin4E +_ sin6E

3 8
+-y,2--_sin E+...

cos4E = 1 - 2 sin2E + stn4E

5
cos5E = 1 _- sin2E + _- sin 4 E - _B sin6E

5 8
-f-fig sin E + . . .

Substituting Eq (59) into Eqs (58a, b) the fol-

lowing expressions are obtained:

A__a_a=rev -4a2B00 e-z f_e z cos E _a0. al sin2 E

0

- _2 sin4 E - _3 sin6 E - _4 sin8 E-... )dE

(60a)

A_._erev_ _4aBP0 e-z _ e zcosE (G 0 _ fll sin2E

0

(59)

where

- ]32 sin4 E - /_3 sin6 E - _4 sin8 E-... )dE

(60b)

z = Ka,

and the constants ai, fli are power series in terms

4
of eccentricity, up to c , as follows:

2 E3 7w0 = i + 2E + _ + +_-_

al =, +_ 2 +_ 3+_ 4 +

4+_ 5+_ 6+..

i 3 3 7 4

a 2 =_E -13-c -_-,

i I 3

a3 =_'i -T_' - "'"

=56 3 3
_4 £ -- T_-_-E ., .

_0 =

/34=

1 2 1 3 1 4 1 5
1 +, -_-c -,/c -_-, -g_

½+. +_ 2 +_._ 4+ ...

1 5 2 1 3 33 4

g-T_' -g_ --8-4-' -""

1 3 2 194
1-8 --3-2 _ + -i-2"8 +""

5 13 2 27 4
-2-5-6-'+ I--0-_' + "'"

(61a)

1 6 "_
-1-g_ -...!

1

(61b)

It is noted that Eqs (60a, b) conform to the
modified Bessel functions of imaginary argument,

which ean be written as

Ip(Z) = z cos Esln2P EdE

? (p+ i) i_ (_) 0
(62)

where:

p = (1, 2, 3---)

and

p (n + 1) = hp (n)

The integrals in Eqs (60a, b) can now be expressed
in terms of Bessel functions as

f zoos Ee dE = _ I0 (z)

0

f ZCOS
e Esln 2 E dE -

0

z1 (z)

_ 3_I 2 (z)
Z COS

e Estn4 E dE -
Z

0

_e 3.5_I 3(z)z cos Esin 6 E dE = 3
Z

0

_ z 3"5"7_ 14 (z)
Esin8E dE = 4

e cos

0 z

(63a)
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NOTE: For modified Bessel functions I0 (0) = 1

and 12(0) = 13 (0) = ... = Ip (0) = 0. so that for

z = 0, Eqs (63a) are seemingly indeterminate

for p >_ 2. The limiting values, however, can

actually be found to be finite:

i (z)
lim -P = 1 (63b)

z_ 0 z p 2 p (p : )

Now in terms of modified Bessel functions the

integrals of the orbital decay rates can be ex-

pressed as:

_ - _Ii (z) _ 3_rI2(z)dE =_0_10(z) c_1 z _2 --2----

0 z

3-5_ 13(z) 3.5-7_14(z)

° o 3 -- - c_4 4 -- -'''(64)
Z Z

(and a similar equation involving ]3i}.

Thus, both Aa and &( can be expressed as series

of the same form but differing coefficients. How-

ever, the computation of these changes is unnec-

essarily complex due to the fact that higher order
modified Bessel functions can be reduced to a

linear combination of orders zero and one d0(z}

and Ii(z)) by the use of tile redaction formula

Ip+l(Z) = Ip_l(Z) - _ Ip (z) {65)

The reduction formulas up to the order four
are

"N

2 ii(z )12(z) = Io(z) - _-

_4(_)= (1 77

(66)

Now using Eqs (66) the decay rates of elements
can be written in the final form for elliptic orbits

f_arev = - 4_ra2BP0 F 1 (z, _) (67a)

Aerev = - 4_aBP0 F 2 (z, c) (67b)

where the following nondimensional functions are
used:

[ 3c_2 60_ 3Fl(Z'')=-e-_ %-7 +

105a 4 (z2 + 24)+ ]6 "" • lolz)
Z

15c_3(z2 + 8)

6a 2- e'l-"_+' 4
z z

+ (continued)

840a4 (z2+6)z6--_ +''' ] ll(Z) }

{[- __3'_2 60'_3
F2(z, E) = e -z _0 z _r- + z_

i05/_ 4 (z 2 + 24) + I6 • • • Io(z)
Z

(68a)

[ -_ + 15'83(C+8} (68b)
- /31 z z

840f14(z2 +6) ] II(z)}6 +''"
z

Note is made that Ref. 16 tabulates e-ZI0(z),

e-zll(Z). Note also that the following asymptotic

series are given in Ref. 16, p. 271 for large z:

i _ 12 12 - 3 2

e-ZIo(z)
(2_rz)l/2 } i +-- +-1! 8z 2! (8z) 2

12 . 32 . 52 12 . 32 . 52 . 72
+ + +...

3! (8z) -J 4! (8z)4

(69a)

1 { i" 3 12. 3- 5
--ZXl(Z )

e

_)1/2 1,1 - l!8z 2! (8z) 2

12.32.5.7 _ 12.32.52"7.9 _

3! (8z) 3 4! (Sz) 4 ''" (
(69b)

Note is made at this point that decay rates as

predicted by these formulas have been checked

against tile numerically deterinined rates and"

agreement shown to be good for the cases of mod-

erate eccentricity. In no case, however, should

the method be employed for eccentricities less

than approximately 0.03 since tile assumptions
made previously restrict the range of applicability
of the method. The value 0.03 was determined

numerically.

r

= --Pe' Eqs (67a, b) can beNow, noting that a 1

written in the following form:

da _ FI= - 2B P0

( .rde 1 2BP0_f- = _ _- F 2

But, since (-2BP0;Pr p ) is simply the decay rate

for a circular orbit at initial perigee altitude,

\t_K--]E = 0' the equations can be rewritten as

da (d#): (i - E) -1/2 F l
_i- E -0

(71a)
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del(d )= (1 - E) -1/2 F 2
_- _ E = o (71b)

From Eqs (45) and (71)the final decay rates are
obtained

% 2drp 
-ac \-at/.. 0

(I - E) -I/2 G l

(I - ,)-1/2 G2 J

(72)

0.03<_<0.4

where

"-dt--/c ,, 0

G 1 = (1 + _) F 1 + F 2 (nondtmensional)

G 2 ffi (1 - _) F 1 - F 2 (nondtmensional)

At this point it should be noted that the functions

G 1 and G2, although they are relatively complicated,

are nondimensional and need be computed only once.

In the present study these nondimensional drag de-

cay parameters for elliptic satellite orbits were

hand computed, carrying terms up to c 4. The re-

sulting parametric curves are presented in Fig. 9.

Thus, the upper limit on e, emax < 0.4.

This figure shows G 2, the perigee parameter,

to be independent of e to a high order of approxi-

mation though there is a variation of G 2 with the

parameter Z. This behavior is not the case with

G1, the apogee parameter, the reason for this

behavior being that apogee decays much more ra-

pidly than perigee for an elliptic orbit. Special

attention is also drawn to the curves denoting low
eccentricities. These curves will be discussed in

subsequent paragraphs.

4. The Case of Small Eccentricities

Since the Bessel function expansions of the

previous section are not valid for eccentricities

below 0.03, an alternate approach will be applied

in this region. This approach was developed by

Perkins (Ref. 8) and again assumes an exponential
- kAr

atmospheric model P = P 0 e In this analysis

a nondimensional parameter C and a drag constant
K are defined to be

{_2 1 kr . Z
C-=krp 1 "\V]p , =_ = (1+,)_-

(73)

CDA 2 2

K_g0 W P0 r0 = 2Bo0 rpi (74)

Using Laplace transformations, the decay rates
are found as

dr
a

--at- =-K

dr

P -K
-dt- =

But since V r
P P

written as

--_=

rp 0

(75)

%0)e

=_prp (1 + E), Eq (92) can be

_/-1+ E P+ (76a)
-0

-'d_1 _0

where

-B-f-/c=O _-2BP0 _p

P+=e-C(a+_)

p- ffi e-C(a _ _)

X X

a = -_ = 1+_-_2
rim0

xnbfC

0 (n!)2 (n+l)

2 ]+ x +

3(2:)2 " " "

P

2
X

+ _-_2

=C

+ ° .

I + x

(76b)

(77)

and

The nondimensional parameters P+ and P- of

Eq (76) are plotted in Fig. 10. The trends of
the curves are noted to be the same as those ob-

tained by numerical integrations.

Figure 10 is, of course, limited to small eccen-

tricities, as can be seen from the following ex-

ample:

Assume:

h . = 85 stat mi = 448,800 ft = 136,794 meters
pl

r • = 2. 135, 170 x 107 ft = 6. 507998 x 106

Pt meters

c = 0.02
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Solution

FromFig. 7a:

k0 = 1.98x 10-5/ft =6.50x 10-5/meter
P0 = 7. 15 x 10 -12 slug/ft 3

= 3. 684 x 10 -9 kg/meter 3 (from Chapter II)

=a o0 ,
= 0 _ mps

From Eq (73):

kr

- 8.24

From Fig. 10:

P+ = 2.73, P" = 0.0088

/drp_

From Eq (76a): r a _ _--d_] (=0
_1+_ P+

: 2. 16 fps = 0. 658 raps

• [drp P-
From Eq (76b): rp = _--d_=0

= 0. 070 fps = 0. 021 raps

Consider the same example for a slightly
larger _. If _ = 0.04, then C = 16.1 and x = 64.

Proper convergence of Eq (77) now requires an

extremely large number of terms (at least 25)

thus making the solution impractical.

Thus, since Perkins' methods and the Bessel

method are applicable in different regions and

since the solutions have the same form, i.e.,

/drp 
_a = _--d_/c =0 _ P+ _ < 0.03

[ drp_

: :0 G1 > 0.0a

and similarly for " Perkins' parameters P+ and
rp,

p- can thus be considered to be analytic extensions

of the parameters G 1 and G 2. This fact was noted

to be responsible for the low eccentricity curves

of Fig. 9.

5. Apogee and Perigee Decay Rates and Satellite
Lifetimes

The previous Subsections C-3 and -4 have pre-

sented in nondimensional form equations and graphi-

cal data for {" and i- . However, before determin-
a p

ing an estimate of the lifetime of a satellite it is

necessary to dimensionalize the various param-

eters. This has been done in Figs. lla, b, c

and 12a, b, c, which present apogee and perigee

decay rates both in English and metric units for

altitudes in the range 75 to 400 stat mi (120 to
640 km) and eccentricities from 0 to 0.4. It is

noted that there are bumps on these curves.

These irregularities are the direct result of

similar behavior for the density slope of the

ARDC 1959 atmosphere. Correction of this data

for atmospheric variation will be discussed in

Subsection C-6. Changes resulting from changes

in the model atmosphere (e. g. , 59 ARDC to 62

U,S. Standard) require reeomputation of Figs. 11,
12, 13 and 14.

These decay rates must be integrated to yield
the lifetime. As was mentioned earlier, this

portion of the analysis will be conducted numeri-

cally. The reason for this step is simple--it is

not desired to introduce further approximation,

which could materially affect the accuracy of

study. To be sure, approximations have been
made to this point; however, the validity of each

has been well founded. If a further assumption

were made to obtain an integrable form, the

accuracy would suffer materially and the attention

to detail exhibited earlier would be for naught.

Some have argued that since the atmosphere is

not known and since the other approximations have

been made, such core is unnecessary. While this

is true to a degree, a philosophy such as this will

never yield good estimates even as the various

density variability factors become known, while

the philosophy of this section will reflect such

improvements.

The integration procedure for this computation
is

(A ha).

2xt.= 3

where

(Aha) is the j-th apogee altitude increment
J

-d't-]j is the apogee decay rate at this altitude

thus
reentry

T L = _ A tj

j=0

This integration is very simple and can be rapidly

performed even for small values of (Aha) . This
J

type of integration also admits several refinements

involving the use of iteration and average decay

rates rather than instantaneous rates• However,

if the step size is sufficiently small this is not

necessary. The correct value of (Aha) . is deter-
J

mined by the repetition of the same integration

until the values of T L for successive values agree

to within a prescribed error. This step size need

not be the same for all orbits, but for orbits of

similar a and e, tile step sizes generally are the
same (a value of 500 ft or 150 meters was utilized).

The results of this integration are presented in

Figs. 13 and 14 in both English and metric units
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ft 2
for a value of B = 1 _ or 0.6365 x 10 -2 meters2

kg
Decay histories for typical satellites were added

in dotted lines in order to indicate the changes in

eccentricity and perigee altitude as functions of
time.

Lifetimes for all other values of B are obtained

via the approximation

B 1 B 2TLI : TL2

or TL 1 B1

TL2 : ---_2

The basis for this approximation is that the decay
rates were all noted to be linear functions of B.

Thus, since B is a constant, it does not affect the

integration, and as a result lifetime is inversely

proportional to B. This behavior is true in free
molecular flow; however, as B is made signifi-

cantly larger or as the altitude is decreased, the

vehicle leaves the free molecule region, and the

assumptions of this chapter deteriorate. Thus, the
simpler conversion must not be used indiscrim-

inately. If there is a question as to the regime

of flight, specific data should be prepared. Other-

wise the conversion is justifiable.

Though much has been written on the variation

of lifetime with eccentricity, it is noted that these

figures show the extreme sensitivity of this param-

eter even for small eccentricities. This sensitivity

explains why satellites with the same total energy
per unit mass (i.e., same a) do not necessarily
have the same lifetime.

6. Comparison with Satellite Data

In the final analysis, the value of a computational

technique such as this must be assessed in terms

of its ability to predict phenomena correctly. Thus,
the actual lifetimes of several satellites will be

checked in order to provide this information.
First the value of B to be utilized must be com-

puted for initial determinations of lifetime or for
preliminary estimates. The value of B must be

computed based on estimates made earlier in the

discussion of free molecular flow. However,

once the initial tracking data from the satellite is

available, a more accurate method is available.

This method is based on the formulas developed

for the change in the element a.

r + r

a p
a - 2--

+_ fl +h
a = a p _ a p-----2 _-

Thus, if a is known, an effective ballistic coeffi-

cient Bet f can be found by utilizing the computed

and t_ for B = 1 (rather than the observed
a p

values). Thus

2 aobserved

Bet f = (h a + hp)theoretica 1

aobserved
=

2 pp _(G 1 + G2)

This approach compensates for a variety of sins

since the nature of the body in question, the mass,

the nature of the tumble, and even variations in

the density of the atmosphere are factors included
in the correction.

TABLE 1

Comparison of Satellite Lifetime Estimates

Actual

Effective 1_ _ E stiraated Lifetimes
LHet_mes (llef. 15}

Name _ (m2/kg) _ {day's)

Sputnik 1 O. 69 0, 44 x 10 -2 145 !!2

Sputnik II 1.00 0.64 155 162

Sputnik Ill 1. 13 0, 72 221 202

Explorer Ili 3. 69 2. 35 84 93

Explorer IV 1.55 0, 98 469 455

_core 2. !_8 i. 91 32 34

Discoverer I _i. 5 0, !_5 12. ii 5

I)iscoverer Ii 1. %0 0, 95 11.0 13

Discoverer V 1. 46 O. 93 45 46

I)iscovercr Vt I. 13 0, 72 (J2 62

l)iscoverer VII i. 53 O. !)7 14 19

Discoverer Vllt I. 38 O, g8 10(I lOF_

Discoverer X] 1.65 t, 05 9 it

Discoverer X_II i. 04 0. 66 87 !_7

Discoverer X1V 1.30 O. 83 24 29

Discoverer' XV i. 50 O. 95 30 35

Discoverer xvn O. 95 O, 6l 51 47

,:'Computed from tile _Lteilite dixta of tile initial decay rates of

semimajor axis.

(1 ft2{$1ug = 0.6365 x t0 -2 m2/kg)

Since effective ballistic coefficient is considered

the more accurate, it was used in the construction

of the foliowing table.

Two things in Table 1 are important and should

be noted. First, the values of Bet f as computed

from the orbital decay during the first few orbital

revolutions are not in all cases in good agreement

with the values predicted theoretically. Consider

the following examples:

Beff Btheo

Satellite (ft 2 / slug) Agreement Remarks

Sputnik I 0.69 0. 603 Good Neglecting
antennas

Explorer III 3.69 3.71 Good Random

tumbling

Explorer IV 1.55 3.21 Poor Random

tumbling

This being the case, it is necessary to update

the knowledge of B as data becomes available
in order to obtain reasonable lifetime estimates.

The second point is that the agreement between the

computed data and the true data is good. To pro-

vide an appreciation of the level of improvement,

several previous works in the field were reviewed
(Refs. 7, 9, 10, 11, 12 and 15). Data for these

references are not included here because of the
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fact that different atmospheric models and differ-

ent data for the satellites have been assumed and

different corrective procedures (i.e., Bef f)

utilized in the correction of the results. As a

general rule the estimates obtained here are

superior to these works, though there were cases
for which other curves were more accurate.

Since this was expected, the relative value of the

approach was determined by a root mean square

estimate of the errors in the predicted lifetimes.

(The results included here produced appro×imately

13% error, while those of the literature varied

from approximately 15% to 35%. )

This improvement in the agreement seems

very significant. However, the magnitude of the

final error is still large. The reason for this

large error lies in the fact that the method does

not provide for atmospheric rotation, for density

variability for variations in B, or for the oblate

nature of the atmosphere. This being the case,

subsequent paragraphs will be devoted to refining

the previous work.

D. TIIREE-DIMENSIONAL ATMOSPHERIC

PERTURBATIONS

Due to the fact that the atmosphere rotates,

the velocity of the vehicle relative to the atmo-

sphere will not be tile velocity of the vehicle rela-

tive to space. Thus, the drag force will not lie in

the plane of unperturbed motion and each of the
six elements or constants of integration will be

affected rather than just the three considered

previously. Since tile equations for variation in

the elliptic constants have previously been de-
veloped, it thus remains to describe the perturb-

ing force and discuss the resulting motion.

i. The Perturbing Force

is

The drag acceleration which acts on the vehicle

_=-BpV2_
m r r

where

_r = (_'- _atm)

V =_ xr
arm e

This acceleration must now be resolved into com-

ponents in order to permit evaluation of the re-

sultant motion. The specific set of components

to be utilized is the set R, S, W discussed in

Chapter IV.

is measured along the radius

is measured in the general direction of

motion perpendicular to

completes the right handed set.

First, the atmospheric velocity

V
arm kA

' S1 , W

sin (0+ _) i sin i cos (0+ t0) '.cos i

: 0 i0 I

= r f_eECOS i S - sin i cos (0+ _)

Secondly, the vehicle velocity

A

V:_a+r6_

thus

v
r

and

= r R+ (r0- r f_ cos i) _
e

A

+ r f_ sin i cos (@ + _) W
e

Vr 2 r 2 +(r_) 2 - 2r20 f2e cosi+(r_ e cosi) 2

+E"% sini eos(0+

= V 2 - 2H_ e cos i+ r2 f2e2 Ecos 2 i

+ sin 2 . 2 )]1 COS (0 + ID

= V 2 - 2Ilf_e cos i+ r 2 f_e2 fl

- sin 2 . 21 sin (0+ _0)_

where

It= the angular momentum per unit mass

This result was also obtained by Sterne (Ref.

18) and Kalil (Refs. 19 and 20). Now at this point

the function V r must be expressed in terms of

the eccentric anomaly in order to facilitate inte-

gration with respect to time.

V 2 _ _ 1 + _ cos E
a 1 -e cosE

2 2 cos E)r = a (1 - 2_ cos E + 2 2

thus

2
V

r .e 2-_ .1-_ cosE
_ /_ I + e cos E i - cos

a 1 - c cos E n 1 +¢ cos E

% (1 -_ cos E)3 2 2
+--2- (i + _ cos E) (i - sin i sin (0+ c0)

n

2 a 3n :p/

But, as was noted by Sterne, _e/n can be no

larger than approximately 1/15 for earth satellites;

thus V can be obtained in an approximate sense
r

by the binomial expansion of the quantity within

the braces by neglecting terms of the order
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(_e/n) 2. This step appears justifiable in view

of the fact that there is such a large uncertainty

in the atmospheric density at any time and in the

aerodynamic characteristics of the vehicle. Under

this assumption, V can be expressed as
r

 cos 7
Vr a 1 -_ cosE 1 - n cost l+EcosE_J

This equation shows that to the order of corrective

terms smaller than approximately ½ 1--5- or

the effect of the earth's rotation is a simple func-
tion of the inclination and of time. The form of

this corrective term being sufficiently simple, the

subsequent integration of the equations of motion

appears attractive. Now, the drag acceleration is:

__.L= -Bp 1-C cosEI/ sihE R
(1 -_ cosE) 3 1+_

+ -E _ - f_e cos i (i - c cos S

+ _e sini cos (8+ w) _I - E cos E)2 W]

where

C =

_ell c 2 cos i

n

But

cos (8 + ¢0) = cos @ cos _ - sin @ sin ¢0

I
cos E - _ sin E Vl - 2

= COS tO - - sin to
1 - E cos E 1 - _ cos E

Thus the final form of the drag acceleration is

o  i,+ cos ^_= -Bp_ (i _ E cosE)3 L l+_cosE_J sinER

c - fl--_-g__ ! 7 (1 -E cos

cos°

2.

- (sin E _- _2) sin_l W1

The Change in the Orbit

At this point it is necessary to refer to equa-
tions for the time variations of the orbital elements

(Eqs (60), Chapter IV) or to the form utilized by

Sterne and pvesented in Plummer (Ref. 21):

da 2
= H[R tan ¢ sin @+ S sec q_(1 + e cos @}_d-_-

dc a
= _ cos _ [R sin e+ S (cos @+ cos E)]_T

di _ r cos (8 + w) W
dt 2

n a sin i cos

df_ r sin (8 + _)

_l-= 2 • W
n a sin i cos

dw a cos 2 _ cos 2 @ R - r sin 0 (2 + • cos 8) S
_R-=- 2

n a sin _ cos ¢

+ r sin (0+ _) W
2

n a cos Ctan i

2 + 2 sin 2 1_
n a

2 idf_
+ 2 cos _ sin _[-

where

sin ¢ e2)l/2= (i - as is customary in some

of the astronomical texts

_' = mean longitude at the epoch

R, S , W = the components of the disturbing
acceleration

At this point it is noted that since

n (t - tO) = E - c sin E

i -E cosE

Also from Chapter III,

cos E -
cos O -

i-_ cosE
i

sin O = I 1 - c2 sin E
l-e cosE

Thus the expressions for the changes in the

orbital elements obtained by substituting for
R, S and W can be transformed into functions of

the independent variable E and its time rate

E. Integration for the secular change in each

element would then be possible (utilizing the

limits for E of 0 to 2=) if the density could also

be expressed as a function of the variable E.

As was noted in previous sections of this

chapter, the density of the true atmosphere does

not vary exponentially with altitude. However,

as was also noted for small variations in the

altitude the approximation is valid. Selecting

once again the perigee altitude as the reference

for the approximation (since the largest portion

of the drag force occurs near perigee), the den-

sity can be written as

-K (h - hp)
P=Po e



where

P0 = density at perigee

h = a (1 - e cos E} - R e [1

- f sin 2 i sin 2 (@ + ¢_)]

hp = a (1 - _) - R e [1 - f sin 2 i sin 2 0a]

= [sin2.a, (i - cosE)+ Re f sin2 i (0+0a)h-hp

- sin 2 _]

R e = earth's equatorial radius

Thus the approximate density is

P = P0 exp[-Z (i - cos E) + q (sin 2 (0 + to)

- sin 2 to)]

where Z was previously defined to be Ka., and

where

2.

q = K R e f sin i

At this point Sterne presents a Taylor expansion

of p in the form

P=PO e

-Z
ZcosE_ _e (sin 2 (0 + to) - sin 2 to)£

,j

-Z Z cos E _ , sin 2m E

: Po e e q 2m E)2m.La (1 - _ cos
m=O

In the series, the terms which are odd functions

of 0 are also odd functions of E and may be ig-
nored since they will not contribute to the com-

plete integral for the secular changes in the

elements. Using the even part of the series
4

through terms in q , which gives the series ac-

curately to about 1 part in 1000 for the altitudes

in which this study is concerned, Kalil obtained

q3

q4

qo = i

ql = (I - 2) (_q cos 2to+ _ sin 2 2to)

q2 (i ,2)21_ 3= - cos 4oo - % cos 2to sin 2 2to

+ _ sin 4 2

= (i -,2)3 I- q-;cos3 2to+ q4cos 2to sin2 2to

4 to]+ _-4 c°s2 2to sin 2 2to - h sin4 2

2,4Fq4 4 4 to]: (1 - . ! L_ 4 COS 4 2to - _ sin 2 4to + _4 sin4 2

Since the angle _0 is approximately constant during

any single revolution, tile qi can be treated as

approximate constants when integrating over one

revolution, without the introduction of appreciable

error.

It is noted that according to the remainder

theorem for alternating series, a series whose

terms are alternately positive and negative, anti
such that their absolute values form a monotone

null sequence, is convergent {this is tile case

here for the series expansion of the atmospheric

density}. This being tile case, the absolute value
of the remainder after n terms of such a series

does not exceed the absolute value of the (n + i) st

term. Hence, the relative error introduced in

the series expansion of the atmospheric density
n .

by retaining onl_ terms through q is
n+l

A p< _ exp (q)

Thus, by retaining terms through q2 the relative

error in p is 3.4°70 at altitudes of i00 naut mi(185 km)

where q._ 0.5, and only 0.18070 at altitudes of

200 naut mi (370 km) where q -_ 0. 2.

Upon substitution of this density model into

the equations of variation of constants and perform-

ing the integration, Sterne reported the following

secular changes in the elements:

(i + Q3/2 F, 1 - (_2 /--T-

(Aa)se c = -2B_ (i - 0 I/2 F - C i-7_J PO_

fl 9 f2•

(A')sec = -2B{1 -'2) •1/'i--7"7 [1 - C 1 - _2 _a_[1p0

4. ) ]1 (3 + 4. N+ --_-+ f__8Z I - . i -C_ _C + "'"

B i - e(_i)see : -_7 _e sin i (i - 2) (i - C ]--47() aP 0

+ cos 2to 1 -g-_ 15+ 4_ N+ 4. -- + ---

B 1-..

(AfDsec = --2 F_e sin 2to (I - 2) (I - C I+----[) aP0_ 2-_Z

1 3-2. }• 1 - 8--Z(15 - 4. --_+ 4_ N)+ ---
1 -.

(_to)
see

(A")se c

= -cos i (A _)sec

: (1 - cos i) (A_)se c
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or

(AM)se c = 0

where

4t 2 1
fl = 1 - 8_N - ---2-+

1 - E 8ql

8e2(1 + 5e 2) + 16 eN(5e2 2- 1)+_32e2N2
f2 = 1 + 2- (1 - e2) 2 -3- 1 -

ql (1 + 10e + 8_ N) + q2 (1 + 4e)

I+C
N=I -C +E+EC

These results are believed valid for all of the cases

for which Z > 2 to the order of q2 and represent

the solution well for such cases. However, if
Z < 2 a more general solution is necessary. This
solution suggested in Sterne's paper (carried out
for the element a) is reported for the elements
a and e by Kalil. The results are shown below.

5

(AT)se c : -6=TBa(1 -C) 2 P0 e-Z AnI n (Z)

n=9

5

(Aa)se c = -47r Ba 2 (1 -C) 2 p0 e-ZV A I (Z)
n n

n=0

5

(Ae)se c = -47rBa (1 - 2) P0 e-Z_ BnI n (Z)

n=0

where the constants evaluated for small eccentric-
3

ities (i.e., e << 1) are presented betow:

A 0 : 1 + 2 (j2+ ½)

2 1 I E2 7)_A1 = 2jE --_(j2+g)+ _ 1+ (j2+ 4j+g

e 2 q2

A 2 = 2qlZ (j+ 1) - 3Z---2 ql ij2 + 4j+ _) + 3 Z_2

c q3

A 3 = 6_ q2 (j + 2)+ 15 Z_3

A 4
= 15q3 _-2e (jL

105 q4

+ Z_--

2+ 3) + _7 (j2+ 12j+ _-)

E

A 5 = 210 q4_ (j + 4)

B 0 = _ (2C+ 1)

B 1 = it -C) 2 3C+ 2 ql- _ + _(3 - 2C)

B 2 = 1 -C) 2 -2-_-fi (6 - 5C

3B3 = Z--2-2- e + i -C) 2+ (10 + 17CZ L_

q3 15

+z--2 _ i7- 10d+6C 2)

3q2 F 97 )_%: z-2L + i5-4c

15q3[-

q4 105e_
- 30C+21C 2 +_ -l_u - 14C+8C 2)

I

=- q3 (i05e2)I____ 33C + 21C21+ q4 (105)[iB5

2,89 t-c) 2- (9- c+sc 2)+ L -56c
l+C

J : 1---=_

K = negative log density slope

The symbols C, Z, e and qi are the same in this

set of equations as previously defined. The re-
duction formulas discussed earlier can also be

utilized, to relate all of the higher order Bessel

functions to the fundamental functions 10 (Z) and

I 1 (Z). This step simplifies the numerical evalua-

tion of the time history of the decay; however, it
only serves to make the functional form of the
resultant equations more complex. For this
reason the equations are left in their present
form.

This set of equations is believed valid for
satellite orbits extending down to approximately
180 km with errors less than several percent.
Thus, if the inclination of the orbit were to be

specified, the equations could be integrated
numerically to yield realistic lifetime and decay
histories for the vehicle as was done in the

discussion of the nonrotating atmosphere. The
possibility of being able to construct a family of
lifetime figures for various inclinations is also

noted, though to date this has not been accom-
plished. Indeed, this step does not appear at-

tractive for general computations because the
procedure would result in an error source when
data is applied for values of B other than that

utilized in the construction of the figures. Thus,
the most attractive procedure involves the numeri-
cal integration of the decay rates for each satellite
of interest. This approach, though more cumber-
some, will be more numerically exact and should
result in errors approaching an order of magnitude
less than those obtained with the nonrotating at-
mospheric analysis.
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Though numerical data is not presented,

several general observations will be made. First,

the equations show that the effect of the atmospheric
rotation is to decrease inclination for all orbits

(inclination defined 0 ° < i< 180 °). Secondly, the
effect is to decrease tt_ r_te at which a and E

vary for i< 90 ° and increase the rate i> 90 °.

Thirdly, rotation produces secular regression

and precession of the usculating ellipse.

Numerical computations reported by Sterne

substantiate not only _hese general trends but

also to a good degree, the numerical values of

the perturbed elements. This being the case, the

theory as evinced by the equations of this section
is believed to represent the best theoretical esti-
mate of the behavior of the vehicle.

E, THE EFFECTS OF DENSITY VARIABILITY

(Ref. 22)

To this point the approximations made in the

discussion of atmospheric effects have been re-
fined to include oblateness and rotation. Still

no mention has been made of the effects of density

variability. If the time intervals are large and the

altitudes sufficiently high that the forces are not

extremely large, the density variability effects

will tend to null out due to the fact that the model

atmosphere approximates average conditions.
These cases are treated in previous discussions

to varying degrees of approximation. However,
if the time intervals are short or the densities

more significant, the effect of variability will be

more pronounced, and the equation should be
integrated with the estimated density rather then

with the model density. One approach to the

problem of analysis of this latter case was shown

in Chapter IV-C-6-d, which discusses random

drag fluctuations. The following paragraphs

(Ref. 22) extend this approach and provide some

numerical data which is of general interest. The

parameter of these discussions is the time of

nodal crossing, a readily observable and easily

computed quantity; the other parameters, be they

orbital elements or position and velocity, should be

checked as time permits. One such investiga-

tion is reported in Ref. 23.

1. Errors in the Time of NodaI Crossing due

to Drag Fluetuati0ns Alone

The contribution of random drag fluctuations
to the rms error in predicted time of nodal

crossing depends on the correlation function of
the random fluctuations, which is unknown. Upper

and lower bounds however, can be constructed.

These bounds on the random error are given in

Fig. 15. In the upper bound, the random drag
fluctuations are assumed independent from one

revolution to the next. In the lower bound, the

random fluctuations are assumed perfectly cor-

related over intervals of 25 revolutions, but un-
correlated from interval to interval. The curves

actually show the ratio of the standard deviation
of the prediction to the standard deviation of the

random fluctuation, a, which is calculated from
observations smoothed over intervals of 25

revolutions.

The estimation of (r is thus necessary to trans-

late the data of this figure to errors in the pre-

dicted time. No completely satisfactory method

is available to perform this function; however,

observations of sateiIites with perigees in the

range 220 to 650 km indieate that cr (in minutes/

revolution) is given by the empirical equation

= 2.2 x 10 -3 hp I+1 . (78)

where h is the height of perigee in km, and _- is
P

the smoothed rate of change of period (unperturbed

by sinusoidal and random fluctuations) in minutes
per revolution.

For orbiting satellites the smoothed rate of change

of period, +, can be determined from observations.

For satellites not yet launched, the values obtained

from the previous discussions can be used as an

estimate for the smoothed rate of change of period.

A simple approximation for the prediction

error caused by both of the assumed random drag
fluctuations is dashed in between the two bounds

in Fig. 15. It is

/2

Grm s (N)/ff = 5 (N3/3) I (79)

where G (N) is the rms error in the predicted
rms

time of nodal crossing (in minutes), N revolutions

after the orbit was perfectly known. Equation

(79) is asymptotic to both bounds and ali three

curves derived in Chapter IV.

The eontribution of a different assumption

(i. e., of a sinusoidal drag variation) to the error

in the time of nodaI crossing is given by

(8o)

t{rm s (N)=(2) -1/2 A(k)-2(I1- eos(kN)

-(kN)2/2]2+IkN- sin(kN)_2 ) 1

where:

/2

H
rms

A

h
P

= the rms sinusoidal prediction error

(in minutes) for arbitrary initial

phase of the sinusoidal drag

(8i)
= 1.8 h ''IDI x 10 -3 (empirically

P
determined for same conditions as

e, Eq (78)).

= perigee altitude(kin)

k = (1.617) 10 -4

= the period in minutes

Thus the sinusoidal and random errors can be

combined to give the rms error in timing of an

orbital prediction when the initial elements are

perfect:
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& 7niN) = (G2rms iN) + H2rms (N_ I/2 "

(82)

Now, if the local speed of nadir point is V 0, and

changes only slightly during the N periods over

which the prediction is made, then the correspond-

ing positional error tangential to the projection of
the orbit on the earth is

X (N) = V 0 /k 7n (N) (83)

2. Errors in Orbital Predictions When the Elements

and Rate of Change of Period are Obtained by

Smoothing Observations

In the preceding simplified formulas, a perfect

knowledge of the orbit at the initial time, or epoch,
has been assumed. In actual orbital predictions,

the elements at the epoch and the rate of change of
period are usually found by some smoothing pro-

cedure, using data containing observational errors.

(Discussions of tile errors made by various satellite

tracking devices appear in Chapter XI.) Thus, to

be rigorous these error sources must also be in-

cluded in the analysis.

Suppose that the rate of change of period is cal-
culated from M(< i) "measured" times of nodal

crossing, which-are uniformly distributed through-
out an interval of i revolutions. Assume that there

are three independent causes of fluctuations in the

"measured" time of nodal crossing:

(1) A 27-day sinusoidal variation in the rate

of change of period

(2) A random fluctuation in the rate of change

of period, which is independent from
revolution to revolution

(3) A measurement error introduced by the
tracking device.

Of course, only (3) can be regarded as an error of

measurement, but (1) and (2) will contribute an

error to the smoothed values of the period and the

rate of change of period. The errors will be

given as a function of the number of revolutions
N, after the epoch. The epoch is taken to be at

the center of the smoothing intervals.

(i) The contribution of the smoothed sinu-

soidal drag variation to the rms error

in an orbital prediction which runs for

N revolutions from the epoch is

S(N) A /2+_2) 1/2
- (84)

k2{7-
where

= cos kN- -_ sin +i-_k sin

fi = sin kN - kN+ 8N [i(i + 2) k3-1

,[cos
and A is given by Eq (81), i is the smoothing in-

terval in revolutions, and k = I. 61 x 10 -4 7,

where 7 is the period in minutes.

As the smoothing interval, i, approaches zero,

Eq (84) approaches Eq (80), which represents the

sinusoidal error when there is no smoothing. The

quantity S(N)/A is graphed in Figs. 16a through
16d.

(2) The contribution of the smoothed random

fluctuation to the rms error in orbital

prediction is

R(N) =

for i >> 1

where _ is given by Eq {78).

N 3 I 4

-16(N)3 +(N) 2 _--_1} 1/2

(85)

Equation (85) should be compared with its

unsmoothed counterpart, Eq (79). The quantity
R(N)/(he) is graphed in Fig. 17.

The contribution of smoothed measurement

errors to the rms error in the predicted time of

the Nth nodal crossing is

O(N) = a0 (M) -1/2 (i)-2 ((i)4

.[M (M +2)-1 +(16/9)(M +2)2/M21

+ 256 N 4 + 16 (Ni) 2 [5/[(M + 2) -I

- (8/3) (M + 2)/M

2M (M + 2)-2;- +32Ni

• _i)2/(3M)-4N 2 (M+ 2)-17)1/2

(86)

where all the observations are assumed to have

the same standard deviation, a0, and M is the

number of observations in a smoothing interval

of i revolutions. The quantity O(N)/a 0 is graphed

in Fig. 18. The observational errors, a0, made

by various tracking devices are given in Chapter XI.

In order to have the error given by Eq (86) in

minutes of time, it is necessary to use (_0' the

error of a single observation in minutes of time.

Angular errors, /x0 (in radians), can be approxi-

mately converted to timing errors, _0 (in minutes)
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by

-1

_o _ (1+ Rh-_) h A°e -_0 ' (87)

where h is the height of the satellite, and R is
e

the radius of the earth, and V 0 is the local speed

of the nadir point in units of length per minute.

Doppler errors are more difficult to convert
to errors in timing. They are subject to refraction
and azimuth uncertainties, and it is difficult to
tell how many independent observations are made
in one pass. In addition, refraction and oscillator
instability can create biases as large as the random
errors of observations, and these biases cannot be
reduced by smoothing observations from a pass
over a single station. The observational error
in minutes for one independent doppler observation
is approximately

_b
a 0 _(tf - t i) . . • (88)

(r i - ri)

where the range rate changes from an initial value

of b i to a final value bf during the time (tf - ti) , in

minutes, that a doppler signal is being measured
by the station. The range-rate error in a doppler

observation is A#. For a typical case, (if - t i) is

10 minutes, and (/_i - f_f) is 20, 000 feet per second

(or 6100 mps).

There is an important difference between Eq
(87) on the one hand, and Eq(88) on the other.
Equation (87) is applicable to each individual

observation, hence to the average of a group of
observations. Equation (88) only represent average
conditions, so they only apply to the average of a
group of observations, such as would be used with
Eq (86).

The errors are given as a function of the number
of revolutions after the epoch assumed to be at
the center of the smoothing intervaI. Now assum-
ing t'h--a'}---f_e observational, sinusoidal, and random
errors are independent, they can be combined to
give

Erms(N>@o +

+ Ea (N)} 2) 1/2 (89)

where E (N) is the standard deviation of the
rms

predicted time of the Nth nodal crossing after the
epoch, when the elements and rate of change of'
period are obtained by smoothing observations.

Erm s (N) represents the error tangential to the

orbit of the satellite projected on the celestial
sphere. Errors at right angles to the orbit are
usually an order of magnitude smaller.

Errors in actual predictions issued by the
Vanguard Computing Center, NASA Computing
Center, Smithsonian AstrophysicaI Observatory,
and Naval Weapons Laboratory are compared
with the theoretical model in Tables 2 and 3.
Table 2 contains the errors in one to two-week

predictions made near the peak of the sunspot
cycle. Table 3 shows the errors in predictions

half-way between sunspot maximum and sunspot
minimum. In the tables, N is the number of

revolutions predicted, beginning at the center of
the smoothing interval. The smoothed rate of
change of period is # (minutes per revolution).
The root-mean-square prediction error, E

rms

(N) (in minutes), includes the contributions of

observational errors and drag fhctuations. Tile
theoretical prediction error caused by observational
errors alone is designated by O(N).

TABLE

Prediction Errors Near Peak of Sunspot Cycle

Satellite

Explorer IV

Sputnik III

Vanguard I

Vanguard I

Vanguard I

Atlas-Score

Dates

1958

1958

Fall, 1958

Summer,
1959

Winter,

1959 to 1960

Dec. 1958 to
Jan. 1959

No. of
Predictions

8

7

20

11

2.15 x 10 -3

1.32 x 10 -3

5.5 x 10 .5

2. 1 x 10 .5

6.5x 10 .6

2.2 x 10 .2

N

(aev)

165

220

154

154

154

271

o (N)
(Min)

0. 024

0.01

0. 056

0. 056

0. 056

0.3

E
rms

Actual

(Min)

3.2

3.3

0.25

0.13

0.062

67,0

(N)

Theoretical

(Min)

3.7

1.9

0.22

0. 097

0.061

74, 0

*A single observation has no statistical significance. This case is included merely to show how large the
error can be when the rate of change of period is large.
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TABLE 3

Prediction Errors Half-Way Between Sunspot
Maximum and Minimum

Satellite

Tiros II

Vanguard I

Transit III-B

Echo I

Dates

Dec. 1960 to

May 196l

Oct. 1960 to

May 1961

Feb. to Mar.

1961

Oct. to Dec.

1960

No. of

Predictions

12

12

10

-+

( Min / Rev)

3.7x 10 -6

7.4 x 10 -6

1.05 x 10 .2

6.8x 10 .4

N

(Rev)

250

150

22

145

o (N)
(Min)

0.08

0.06

0.04

0.04

E (N)
Fins

Actual Theoretical

(Min) (Min)

0.12 0.08

0.12 0.06

O. 74 O. 50

4.4 3.3

TABLE 4

Errors in Individual Orbital

Predictions for Vanguard I

Errors Errors

Number (seconds (seconds

of Pass of time) of time)

2309

2986

2836

2234

2459

2535

3173

1934

2911

2610

Number

of Pass

+37 2159

-25 1708

+21 2685

-21 2009

+17 1633

-16 2384

+14 2760

-14 2084

+12 1858

-12 1783

-12

-12

-11

9

- 7

+ 6

- 3

+ 2

+ 2

+ 1

E = 15 seconds = 0.25 minutes
rms

It is interesting to note that observational

errors were the principal cause of errors in

orbital predictions for only one of the cases shown,

that of Vanguard I with its perigee in darkness

(Winter 1959-1960). In all the eases, the pre-
diction errors attributable to observational errors

were smaller than the total error for Vanguard I

in darkness. If the errors in predictions had

been caused mainly by observational errors, then

the prediction errors would have been independent

of the smoothed rate of change of period. A de-

tailed discussion of the theory and the method of

calculation is given in Ref. 21.

Theoretical calculations of the errors in

orbital predictions by the methods described above

are subject to uncertainties because of variations

in methods of fitting, spin of nonspherical satel-

Iites, and sampling errors as well as uncertain-

ties in the estimates of the smoothing intervals,

The uncertainty in the theoretical rms error is

approximately +100 to -50 percent. All of the

examples in Tables 2 and 3 were within these

bounds. Deviations from the theoretical model

have tended to be on the high side so far (1958 to

1961). During the two years near sunspot mini-

mum, the percentage variations of the decimeter
solar flux (which is correlated with atmospheric

density) are only one-third as large as during the
rest of the sunspot cycie, so the deviations from

the theoretical model can be expected to be on the

low side during 1963 and 1964.

E (N) in Tables 2 and 3 is, of course,
rms

a root-mean-square error. The error in an
individual prediction can be Iarger or smaller

than the root-mean-square value, and can be

positive or negative. The distribution function

appears to be normal Table 4 shows the individual

errors in twenty predictions made for Vanguard I
when its perigee was in sunlight (Fall, 1958).

3. Errors in Orbital Predictions When the Rate

of Change Period is Calculate'd from a

Standara /12tmosphere

The usual way of making satellite orbital

predictions is to compute the elements and rate

of change of period at the epoch by smoothing all

the observations made during a certain time in-

terval (usually a few days). This orbit is then

projected forward in time. All of the predictions

listed in Tables 2 and 3, with the possible ex-

ception of the predictions for Transit III-B, were

made by this method. The theory appropriate to

this method of making predictions has been de-

scribed above. The theory for the case in which

the rate of change of period is derived from a

standard atmosphere will now be described. Such

a method might be used when there are not enough

observations to determine the rate of change of

period. In this ease, the error can be separated

into three parts, described under the following

headings:

(1) The error in the period and the time

of nodal crossing.

(2) The error caused by computing the

rate of change of period from a standard

atmosphere.
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(3) The error caused by the sinusoidal and

random drag fluctuations.

(I) If the period and the time of nodal crossing

at the epoch are obtained by a single orbital fit

over N revolutions containing M independent ob-

servations, then the errors in the period. ZX, (in

minutes), and time, At (in minutes), caused by

observational errors, are

At _ _0 M-l/2 (90)

and

A_- = 4a 0 i -1 M -1/2 (91)

where cr is the error of a single independent ob-
o

servation (in minutes of time) and may be obtained

from the observational errors in angular and dop-

pler' units by Eqs (87) and (88), respectively.

In the case of precision doppler observations,

an alternative method of calculating the period is

feasible but is not recommended, because it pro-

duces large errors in the period. This method
is to compute independent values of the elements

from each pass of doppler data recorded by a

station, and average all the sets of elements de-

rived during i revolutions. The errors in period

and timing (caused by observational errors) pro-

duced by this method are roughly

At = (_0 (M)-1/2 (90a)

and

i/2

A_- _ o- 0 _ ,

where (if - t i) is the time interval during which

a single station is recording doppler data during

a pass.

(2) The rate of change of period _-can be ap-

proximately calculated by using the theory of drag

perturbations in Chapter IV and one of the stand

ard atmospheres described in Chapter II. This

method is not precise and a certain amount of error

is thus inserted. However, the magnitude of this

error can not be described analytically and must

thus be accepted.

(3) The errors caused by sinusoidal and ran-

dom drag fluctuations are given by Eqs (80) and

(79). respectively. The reason for using models

which do not include smoothing is that _ is ob-

tained from a standard atmosphere.

Now that the three factors have been discussed,

the predicted time of nodal crossing can be

written in the following form:

tp(N) =t+N_ + (_] _" (92)

where the errors in predictions contributed by

the time of nodal crossing, the period, and the

rate of change of period are At, NA% and

(N 2/2) 7, respectively.

If the coupling among the period and the time

of nodal crossing (which should not cause much

error) is ignored, then the root mean square

error in a prediction made with a standard

atmosphere, N revolutions after the epoch, is

approximately

Erm s =

(93)

+[Itrms(N)12) 1/2,

where the epoch is taken to be the center of the

smoothing interval employed in calculating the

period and time of nodal crossing. Equation (93)

applies in cases in which a standard atmosphere
is used for calculating the rate of change of

period. The error Erms*(N) is tangential to the

orbit of the satellite projected on the celestial

sphere. The error at right angles to the orbit

is usually smaller.

4. Example

Problem:

Calculate the root-mean-square error in an

orbital prediction for Explorer IV, 165
revolutions from the center of the smoothing

interval. The period at the time of interest

was 109 minutes, and the heights of perigee

and apogee were 142 and 1190 naut mi or

263 and 2200 km, respectiveiy. The smoothing
interval is estimated to be i = 10O revolutions,

the number of observations, M = 25, and the

prediction interval, N = 165. The smoothed
-3

rate of change of period, "_ = -2. 15 x 10
min/rev, and the observational error is es-
timated to have been 0.7 miIliradian. The

elements and rate of change of period were

derived by smoothing observations.

Solution:

The errors given by Eqs (84) throut_h (89) are

appropriate. The average height of the

satellite h, was 666 naut mi or 1232 km and

the approximate speed of the nadir point was

V 0 = 2Tr ge/P = 198 naut mi per minute or

367 kin/rain, so Eq(87) gives for the average

error of an observation, (_0 = 2 x 10 -3 minutes.

From Fig. 18, O(N)/cr 0 = 12, so the con-

tribution of observational errors to the error
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1.

2.

3.

4.

in an orbital prediction is 2.4 x 10 -2 minutes.

The normalized random error, R(N)/(5_) is

1, 6 x 103, from Fig. 17. According to Eq

(78), a is 3.7 x 10 -4 minutes per revolution.

Therefore, the prediction error caused by

random fluctuations is 2.95 minutes. The

normalized sinusoidal error is S(N) [A = 7.5 x

103, interpolating between Figs. 16b and 16c.

According to Eq (81), A is 3.06 x 10 -4 minutes

per revolution. Therefore, the prediction
error caused by the sinusoidal variation is

2.3 minutes. Combining the three errors

by Eq (89), the theoretical error of prediction

is 3.7 minutes. For comparison, the root-

mean-square error of eight predictions issued

by the Vanguard Computing Center was 3.2
minutes.
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Fig. 16d. The Ratio of the ms Error in Orbital Pre-

diction Caused by Sinusoidal Drag Variations

to the Amplitude of the Sinusoidal Variation
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The Ratio of the rms Error in Orbital Prediction Caused by Random Dra_
Fluctuation from Period to Period

I0 3

i0 z

_/ ,:4a, i/M = 12 1

/ _ i=48,,/M:4 ,

k

i=48, i/M = I I

i=96, i/M = 12

_=gK i,,. --,_

i=96, i/M= I

b2
/ i = 240, I/M =

%.
I0

/ _ i= 240, i/M= 4
I

///#,,'//
,oO_ / W

p

Lo-* ] L
o ,oo 2o0 300 _oo 5oo

N= NUMBER OF REVOLUTIONS AFTER THE EPOCH

Fig. 18. The Ratio of the Error in Orbital Prediction Caused by Smoothed
Observational Errors to the rms Error of a Single Observation
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